Appendix

Proof of Proposition 1

We solve \(p^*_D \) from \(\frac{\partial \pi_s}{\partial p_D} = 0 \) and solve for \(p^*_E \). We obtain \(p^*_E = w_E \) or \(p^*_E = w_E \pm \sqrt{A_1} \) where \(A_1 \) is a function of the parameters. We find \(\pi_s \bigg|_{p^*_E = w_E} \) \(> 0 \) and \(\pi_s \bigg|_{p^*_E = w_E \pm \sqrt{A_1}} \) \(> 0 \). Next, we find \(\pi_s \bigg|_{p^*_E \neq w_E} \). Notice that \(B_1 \) is a function of the parameters. Remember that the e-book market size \(s_E \) must be greater than zero at \(p^*_E = 0 \) in order to make \(p^*_E = 0 \) economically sensible. Therefore, we have \(B_1 > 0 \). We find \(B_1 - C_1 = w_E^2 > 0 \).

As \(C_1 > 0 \), we find \(B_1 > 0 \). Since \(B_1 > 0 \), we have \(\pi_s \bigg|_{p^*_E = w_E} > \pi_s \bigg|_{p^*_E = 0} \). To verify the second order conditions, we derive the 2 × 2 Hessian matrix. We evaluate matrix \(H \) at optimal point \((p^*_E, p^*_D)\). We find \(H_{11} = \frac{\partial^2 \pi_s}{\partial p_E^2} = -\frac{1}{8} \frac{D_1}{m^2} \) and \(|H| = \frac{E_1}{8m^2} \) where \(D_1 \) and \(E_1 = D_1 - 8(b - w_E)^2 \). Therefore, we find \(D_1 > E_1 \). So in order to show \(H_{11} < 0 \) and \(|H| > 0 \), we only need to show \(E_1 > 0 \). We find \(s_E \bigg|_{p^*_E = 0} = \frac{C_1}{16m} \). We know \(s_E \bigg|_{p^*_E = 0} > 0 \). Hence we have \(E_1 > 0 \). So we verify that the optimal choice of e-book retail price \(p^*_E \) and e-reader price \(p^*_D \) in Proposition 1.

Proof of Proposition 2

We let \(\hat{\pi}_s \) denote the publisher’s total profit at the retailer’s optimal choice of prices \((p^*_E, p^*_D)\). First we will prove that \(0 < w_E^* < \frac{b + c_m}{2} \).

We define \(f_s(w_E) = \frac{\partial \hat{\pi}_s}{\partial w_E} \). Notice that \(f_s \) is a cubic function of \(w_E \) and we find that \(\frac{\partial f_s}{\partial w_E} = -\frac{3}{8m} < 0 \). The potential optimal points are \(f_s(w_E^*) = 0 \), \(w_E^* = 0 \), or \(w_E^* = b \). We find that \(w_E^* = 0 \) can be removed from the candidate set as it is not difficult to show \(\hat{\pi}_s \bigg|_{w_E = 0} \) is less than the profit of not selling any e-book. Second, \(w_E^* = b \) can also be removed as it violates consumer’s IR constraint. Therefore, we focus on \(f_s(w_E^*) = 0 \). Next, we show \(f_s \bigg|_{w_E = 0} > 0 \). We derive \(f_s \bigg|_{w_E = 0} = \frac{A_1}{8m^2} \). It is not difficult to show
min $A_2 = 2((w_F - c_A - c_E)(b - p_F) + c_A b) > 0$. Therefore, we have $f_2 \bigg|_{w_e = 0} > 0$. Next we find $f_2 \bigg|_{w_e = (b - w_F) / 2} = -2c_A / 32m^2$. and $\min B_2 = 4(p_F - w_e + c_F(b - p_F) > 0$. Therefore, we have $f_2 \bigg|_{w_e = (b - w_F) / 2} < 0$. Meanwhile, we find that $\frac{\partial^2 f_2}{\partial w_e^2} \bigg|_{w_e = (b - w_F) / 2} = \frac{3b - c_F}{4m^2} > 0$.

Combining $f_2 \bigg|_{w_e = 0} > 0$, $f_2 \bigg|_{w_e = (b - w_F) / 2} < 0$, $\frac{\partial f_2}{\partial w_e} \bigg|_{w_e = (b - w_F) / 2} = \frac{b - c_F}{4m^2} > 0$, and $\frac{\partial^2 f_2}{\partial w_e^2} < 0$, we conclude that there is only one $w_e^* > 0$ such that $f_2(w_e^*) = 0$. Because $\frac{\partial f_2}{\partial w_e} \bigg|_{w_e = 0} < 0$, we find $\frac{\partial w_e^*}{\partial w_e} > 0$. Similarly, $\frac{\partial w_e^*}{\partial p_F}$ has the same sign as $\frac{\partial^2 f_2}{\partial w_e \partial p_F} \bigg|_{w_e = w_e^*}$. We then derive $\frac{\partial f_2}{\partial p_F} \bigg|_{w_e = w_e^*} = \frac{b - c_F}{4m^2} > 0$.

Proof of Proposition 3

Note that π_R is a quadratic function for p_D and $\frac{\partial^2 \pi_R}{\partial p_D^2} < 0$. Therefore, we solve $\pi_R = 0$ and then we find p_D^* in Proposition 3.

Proof of Proposition 4

Proof of this proposition follows the procedure similar to Proposition 2. We let \hat{R} denote the publisher’s total profit at the retailer’s optimal choice of e-reader price p_D^*. We define $f_4(p_e) = \frac{\partial^2 \hat{R}}{\partial p_e^2}$. Notice that f_4 is a cubic function of p_e when $r = 1 / 2$ (in the case of $r = 1 / 2$, the proof will be straightforward). Next, we show $f_4 \bigg|_{p_e = 0} > 0$. We derive $f_4 \bigg|_{p_e = 0}$ and follow the similar steps as the proof of Proposition 2. We find that $\min f_4 \bigg|_{p_e = 0} = \frac{2b(1-r)((w_F - c_p - c_A)(b - p_F) + 2c_A)}{8m^2} > 0$. So we have $f_4 \bigg|_{p_e = 0} > 0$.

Next we find $f_4 \bigg|_{p_e = p_e^*} = \frac{(c_A - 2c_p r - b + rb)A}{32m^2(1-r)^2}$. and $\min A_4 = 4(1-r)(p_F - p_F r + c_p - w_F)(b - p_F)$. It is not difficult to show $c_A - 2c_p r - b + rb < 0$. Therefore, $f_4 \bigg|_{p_e = p_e^*} < 0$ when $r < \frac{p_F - w_F + c_p}{p_F}$. Meanwhile, we find that $\frac{\partial f_4}{\partial p_e} \bigg|_{p_e = p_e^*} = -\frac{3c_A - 2c_p r - b + rb}{m^2} > 0$. Combining $f_4 \bigg|_{p_e = 0} > 0$, $f_4 \bigg|_{p_e = p_e^*} < 0$, and $\frac{\partial f_4}{\partial p_e} \bigg|_{p_e = p_e^*} > 0$ and the fact that f_4 is a cubic function, we conclude that there exists only one p_e^* in $(0, p_e^*)$ satisfying $f_4(p_e^*) = 0$. Therefore, we have $p_e^* < p_e$ when $r < \frac{p_F - w_F + c_p}{p_F}$.

Proof of Proposition 5

Having shown the result $0 < p_e^* < p_e$ in Proposition 4, we will next prove that $\frac{\partial^2 \hat{R}}{\partial p_e^2} < 0$ and $\frac{\partial^2 \hat{R}}{\partial p_F^2} < 0$. Has the same sign as $\frac{\partial^2 \hat{R}}{\partial p_e \partial p_F}$. We derive $\frac{\partial^2 \hat{R}}{\partial p_e \partial p_F} \bigg|_{p_e = p_e^*} = \frac{(b - p_F)(p_e - 2p_F r - b + rb)}{4m^2}$. It is not difficult to show $p_e - 2p_F r - b + rb < 0$. Hence, we find $\frac{\partial^2 \hat{R}}{\partial p_e^2} < 0$. Similarly, $\frac{\partial^2 \hat{R}}{\partial p_F^2}$ has the same sign as $\frac{\partial^2 \hat{R}}{\partial p_e \partial p_F} \bigg|_{p_e = p_e^*}$. We then derive
Next, we will prove . We define (i.e., we treat as a function of in the wholesale model’s SPNE by . We align the two first order conditions \(\frac{\partial^2 \hat{\pi}_p}{\partial \hat{p}_E \partial \hat{c}_E} \big|_{\hat{p}_E = \hat{c}_E} = \frac{(1-r)(b-p_E)(\hat{p}_E - p_E)}{2m t} \). Given \(0 < p'_E < \hat{p}_E \), we have \(\frac{\partial^2 \hat{\pi}_p}{\partial \hat{p}_E \partial \hat{c}_E} \big|_{\hat{p}_E = p'_E} > 0 \). Therefore, we proved \(\hat{\pi}_p > 0 \).

Proof of Proposition 6

In this subsection of proof, we denote the publisher’s profit in the agency model’s SPNE by \(\hat{\pi}^*_p \). We denote the publisher’s profit in the wholesale model’s SPNE by \(\hat{\pi}^*_p \). We align the two first order conditions \(\frac{\partial^2 \hat{\pi}^*_p}{\partial \hat{p}_E \partial \hat{c}_E} = 0 \) and \(\frac{\partial^2 \hat{\pi}^*_p}{\partial \hat{w}_E \partial \hat{c}_E} = 0 \). We eliminate a common term \(m(t-c_D) - w_E p_E + c_E b + p_E^2/2 - c_E p_E + w_E b \) and then obtain a new equation \(f(p^*_E, w^*_E) = 0 \). Since \(w^*_E = p^*_E \) in the wholesale model’s SPNE, in order to prove \(p^*_E > p^*_w \), we just need to prove \(p^*_E > w^*_w \). We define \(w^*_w = kp^*_E \) and substitute it into \(f(p^*_E, w^*_w) = 0 \). This transforms \(f(p^*_E, w^*_w) = 0 \) into \(f(k) = 0 \). We define \(f(k) = m t - f(k) \). Then we just need to prove that there exists one and only one root of \(f(k) \) in \([0, 1]\). We will prove it by proving \(f'_9|_{k=0} < 0 \), \(f'_9|_{k=1} > 0 \), and \(\partial f_9 / \partial k > 0 \) in \(0 < k \leq 1 \).

In the following, for simplicity, we denote \(p^*_E \) by \(p_E \) and denote \(w^*_w \) by \(w_E \).

First we will prove \(\partial f_9 / \partial k > 0 \) in \(0 < k \leq 1 \). We derive \(\frac{\partial^2 f_9}{\partial k^2} = -\frac{1}{4} \left(\frac{p_E - b - c_A + 2 p_E - 2 p_E^2}{(b-c_A)^2} \right) \) and \(f_9(p_E) \) is a cubic function of \(p_E \) with other parameters. It is not difficult to show \(f_9(p_E) < 0 \) when \(p_E < p_E = (b + c_A)/(1-r) / 2 \). Next we will prove \(f_9(p_E) \). In Proposition 2.3, we have proved \(w_E < w_E = (b + c_A) / 2 \). Since we have \(w_E = k p_E \), we have \(p_E < p^*_E = (b + c_A) / (2 k) \). We derive \(f_9(p_E) = \frac{\partial^2 f_9}{\partial p_E^2} = -48 k^3 p_E + 18 k^2 c_A + 30 k^2 b \) and \(f_9(p_E) = \frac{\partial f_9}{\partial p_E} = -24 k^3 p_E + 2(9 k^2 c_A + 15 k^2 b) p_E - 12 k c_A b - 9 k b^2 - 3 k c_A^2 \). We first find \(f_9|_{p_E = p_E} = 6 k^2 (b - c_A) > 0 \). Second, when \(0 < k \leq 1 \), we find \(f_9|_{p_E = p_E} = 6 k^2 (5 b + 3 c_A) > 0 \). Therefore, \(f_9(p_E) > 0 \). Next, we find \(f_9|_{p_E = p_E} = 0 \) and \(f_9|_{p_E = p_E} = 0 \). Together with \(f_9(p_E) = \partial f_9 / \partial p_E > 0 \), we find \(f_9(p_E) < 0 \). Therefore, in order to show \(f_9(p_E) > 0 \), we just need to prove \(f_9|_{p_E = p_E} > 0 \). We find \(f_9|_{p_E = p_E} = \frac{1}{4} (b - c_A) f_14 \) and \(\min f_14 = 4 (p_F - w_E + c_p)(b - p_F) > 0 \). Therefore, we proved \(f_9(p_E) > 0 \). Together with \(f_9(p_E) < 0 \), we proved \(\partial f_9 / \partial k > 0 \) in \(0 < k \leq 1 \).

Next, we will prove \(f'_9|_{k=0} < 0 \). We define \(f_9(p_E) = f_9|_{k=0} \) (i.e., we treat \(f_9 \) as a function of \(p_E \)). Notice that \(f_9(p_E) \) is a cubic function of \(p_E \). We derive \(f_9|_{p_E = p_E} = -\frac{1}{4} \frac{c_A r b (b - p_E)(w_E - c_A) + c_A p_E}{c_A + b} \). We find that \(f_9|_{p_E = p_E} < 0 \). Next, we find \(f_9|_{p_E = p_E} = \frac{1}{32} \frac{(c_A^2 - 2 c_A b - b + r b) f_{18}}{(1-r)^2} \) and \(\min f_{18} = -4(1-r)(p_E r - c_A + w_E - p_E)(b - p_E) \). It is not difficult to show when \(r < p_E - w_E + c_A \), we have \(f_9|_{p_E = p_E} < 0 \). We define \(f_9(p_E) = \frac{\partial^2 f_9}{\partial p_E^2} \). We find that \(f_9(p_E) \) is a linear function of \(p_E \). We find that \(f_9(p_E) > 0 \) in \(p_E \in (0, \hat{p}_b) \) when \(r \leq \frac{3}{4} \). We also find that when \(0 < r < 1 \) we have \(f_9|_{p_E = p_E} > 0 \). Therefore we prove \(\partial^2 f_9 / \partial p_E^2 > 0 \) in \(p_E \in (0, \hat{p}_b) \) when \(r \leq \frac{3}{4} \).

Next, we will prove \(f_9|_{k=1} > 0 \). We derive \(f_9(r) = f_9|_{k=1} \) as a quadratic equation of \(r \). We derive \(f_9|_{r=0} = 0 \) and \(\partial^2 f_9 / \partial r^2 = -(b - w_E)(b - 2 w_E) w_E \). In order to show \(f_9|_{k=1} > 0 \), we need \(w_E < b / 2 \) and \(f_9|_{r=1} > 0 \). We derive \(f_9|_{r=1} = f_9|_{r=0} \).
where \(f_{21}(w_e) \) is a cubic function of \(w_e \). We find that \(f_{21} = 2c_d^2(b - c_d)^2 > 0 \) and \(f_{21} = 1/8b^2c_d(2c_d + b) > 0 \). We also find that \(\partial^2 f_{21} / \partial w^2 > 0 \) and \(\partial^3 f_{21} / \partial w^3 < 0 \) when \(p_F < b \). Therefore, we find \(f_{21} > 0 \) when \(c_d < w_e < b/2 \). Therefore, to make \(\partial^3 f_{21} / \partial w^3 > 0 \), we only need \(c_d < w_e < b/2 \). Following the same procedure of proving \(0 < w_e < (b + c_d)/2 \) in Proposition 2, we find that a sufficient condition for \(c_d < w_e < b/2 \) is \(w_F - c_d < p_F/2 \) and \(c_d < p_F/4 \). Therefore, we prove \(p_e^* > p_e^* \) when

\[
n_e^* - p_e^* = -\frac{1}{4}(p_e^* - p_e^*)^2 + \frac{1}{2}p_e^*(b - p_e^*).
\]

Since we find that when \(p_e^* > p_e^* \), we have \(p_e^* < p_e^* \).

Proof of Proposition 7 and Proposition 8

For the wholesale mode, we solve the retailer’s constraint optimization problem using the Lagrange method. From the first order condition, we obtain

\[
p_{D1}^* = \frac{t + c_d}{2} + \frac{A}{(4m)} + \frac{\theta_d(b - p_e)^2(1 - k)(2 - a)}{(4m)} + \frac{\theta_d(b - p_e)^2}{(4m)} - \frac{\theta_d(b - p_e)(1 - k)a}{(4m)} \] where

\[
\theta_d = a \theta_d + (1 - a) \theta_d , \quad c_d = ac_d + (1 - a)c_d , \quad A = 2(b - p_e)(p_F - w_F - c_F) + k(b - p_e)^2 - 2(p_F - w_F)(b - p_e) - (b - p_e)^2.
\]

Consider \(p_{D1}^* \) and \(p_{D2}^* \) as functions of \(p_e \). We plug them back to the retailer’s profit function \(\pi_R \). We define that

\[
g_e(p_e) = \left((p_e - w_F)q_F D + (p_{D1}^* - c_d)q_{D1} D\right)q_{F1} D + \left(p_F - w_F - c_F\right)q_{F2} D, \quad g_F(p_e) = \left((p_e - w_F)q_{E1} F + \left(p_{D2}^* - c_d\right)q_{F2} D + (p_F - w_F - c_F)q_{F1} D\right)q_{F1} D.
\]

The \(\pi_e \) can be expressed by \(\pi_e = ag_e + (1 - a)g_F \). Following the similar steps of the proof in Proposition 2, it is not difficult to show that (i) \(\partial g_e / \partial p_e = 0 \) can only be attained at \(p_{E1} > w_F \) when \(p_{E1}^* > w_F \), (ii) \(\partial g_e / \partial p_e = 0 \) can only be attained at \(p_{E2}^* > w_F \), (iii) \(\partial^2 g_e / \partial p^2 e < 0 \) and \(\partial^2 g_e / \partial p^2 e < 0 \). As \(\pi_e \) is a convex combination of \(g_e \) and \(g_F \), we find \(p_e^* > w_F \). For the agency model, it is straightforward to show the results presented in Proposition 8 through solving the first order conditions using the Lagrange method.