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Research in the fields of information systems and human-computer interaction has shown that habituation—
decreased response to repeated stimulation—is a serious threat to the effectiveness of security warnings.  Although
habituation is a neurobiological phenomenon that develops over time, past studies have only examined this
problem cross-sectionally.  Further, past studies have not examined how habituation influences actual security
warning adherence in the field.  For these reasons, the full extent of the problem of habituation is unknown.

We address these gaps by conducting two complementary longitudinal experiments.  First, we performed an
experiment collecting fMRI and eye-tracking data simultaneously to directly measure habituation to security
warnings as it develops in the brain over a five-day workweek.  Our results show not only a general decline
of participants’ attention to warnings over time but also that attention recovers at least partially between
workdays without exposure to the warnings.  Further, we found that updating the appearance of a warning—
that is, a polymorphic design—substantially reduced habituation of attention.

Second, we performed a three-week field experiment in which users were naturally exposed to privacy permis-
sion warnings as they installed apps on their mobile devices.  Consistent with our fMRI results, users’ warning
adherence substantially decreased over the three weeks.  However, for users who received polymorphic permis-
sion warnings, adherence dropped at a substantially lower rate and remained high after three weeks, compared
to users who received standard warnings.  Together, these findings provide the most complete view yet of the
problem of habituation to security warnings and demonstrate that polymorphic warnings can substantially
improve adherence.1
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Introduction

Research in the fields of information systems and human–
computer interaction has shown that habituation—“decreased
response to repeated stimulation” (Groves and Thompson
1970, p. 419)—is a serious threat to the effectiveness of
security warnings.  However, past studies share three critical
limitations.  First, they only examined habituation cross-
sectionally (see Table 1).  This technique is a substantial
limitation because habituation is a neurobiological phenome-
non that develops over time (Rankin et al. 2009).  Further, a
key characteristic of habituation is recovery—the increase of
a response after a rest period in which the stimulus is absent
(Rankin et al. 2009).  Without a longitudinal design, it is not
possible to examine whether recovery can sufficiently
counteract the effect of habituation to warnings.

Second, past studies did not examine how habituation influ-
ences actual warning adherence in the field but instead used
laboratory experiments that presented unrealistically high
numbers of warnings to participants in a short laboratory
session.  Because users typically receive security warnings
infrequently, presenting an artificially high number of
warnings in a short laboratory session is too removed from
reality to be ecologically valid (Straub et al. 2004).  Conse-
quently, for these reasons, the full extent of the problem of
habituation is unknown.

Third, previous research (Anderson, Jenkins et al. 2016;
Anderson, Vance et al. 2016b) proposed that repeatedly
updating the appearance of a warning—that is, a polymorphic
warning design—can be effective in reducing habituation. 
However, their findings were subject to the same limitations
as above.  Therefore, it is not clear (1) whether polymorphic
warnings are effective over time or if users will quickly learn
to ignore them and (2) whether the polymorphic design can
actually lead to better security warning adherence.

In this article, our objective is to address these gaps by con-
ducting two complementary longitudinal experiments.  First,
we conducted an experiment collecting fMRI and eye-
tracking data simultaneously to directly measure habituation
to security warnings as it develops in the brain over a five-day
workweek.  Our results not only showed a general decline of
participants’ attention to warnings over time but also that
attention recovers at least partially between workdays without
exposure to the warnings.  Unfortunately, this recovery is not
sufficient to compensate for the overall effect of habituation
over time.  However, we found that updating the appearance
of a warning—that is, a polymorphic design—substantially
reduced habituation of attention.

Second, we performed a three-week field experiment in which
users were naturally exposed to privacy permission warnings
as they installed apps on their mobile devices.  Consistent
with our fMRI results, users’ warning adherence substantially
decreased over the three weeks.  However, for users who
received polymorphic permission warnings, adherence drop-
ped at a substantially lower rate and remained at a high rate
after three weeks compared to users who received standard
warnings.  Together, these findings provide the most complete
view yet of the problem of habituation to security warnings
and demonstrate that polymorphic warnings can substantially
improve warning adherence.

This paper proceeds as follows.  After a brief review of
habituation theory and recovery, we present the method,
analysis, and discussion of Experiments 1 and 2.  Finally, we
integrate the results from both experiments in a general
discussion and conclusion.

Habituation Theory and Hypotheses

We developed our hypotheses around the two most prevalent
characteristics of habituation:  (1) response decrement, an
attenuation of a response with multiple exposures, and
(2) response recovery, the increase of a response after a rest
period in which the stimulus is absent (Rankin et al. 2009).
Hypotheses 1 and 2 explore how users’ responses to security
warnings weaken over repeated viewings and how poly-
morphic warnings (described below) can mitigate this effect. 
Hypotheses 3 and 4 explore how users’ responses to warnings
recover after the warning is withheld and how polymorphic
warnings enhance this recovery.  For further background on
habituation, see Appendix A.

Response Decrement

Users experience a response decrement when exposed to
repeated warnings.  This response decrement may include
paying less attention and responding less thoughtfully to the
warning.  Dual-process theory (Groves and Thompson 1970)
explains that upon initial exposure to a stimulus, a mental
model is created, and that when people see the same stimulus
again, it is automatically and unconsciously compared to this
model.  If the models are similar, the behavioral responses to
the stimulus are inhibited in favor of reliance on the mental
model instead (Thompson 2009).  In the context of security
warnings, users will unconsciously compare subsequent
warnings to their mental model of warnings they have seen
previously.  If users unconsciously determine that a warning
is similar, they will give less attention to it after repeated  ex-
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Table 1.  Review of Previous Research on Habituation to Security Warnings

Citation
Time
Scale

Experiment
Type

Measure of
Habituation Findings

Anderson,
Vance et al.
(2016b) 

Cross-
sectional 

Laboratory Habituation
as a mental
state as
measured by
fMRI

Used fMRI to measure habituation in terms of decreased
neural activity.  Compared habituation to traditional
warnings to polymorphic warnings that change their
appearance and showed that decreases in neural activity in
the visual processing center of the brain were less for
polymorphic warnings compared to traditional warnings in a
single laboratory session.  

Anderson,
Jenkins et al.
(2016)

Cross-
sectional 

Laboratory Habituation
as a mental
state as
measured by
eye tracking

Used eye tracking to measure habituation in terms of
decreases in eye-gaze fixations.  Showed that fixations
decreased less for polymorphic warnings compared to
static warnings in a single laboratory session.  

Bravo-Lillo et al.
(2013)

Cross-
sectional 

Amazon
Mechanical
Turk

Warning
adherence

Measured habituation in terms of the percentage of users
who immediately recognized that the contents of a dialog
message changed after a rapid habituation period.  Only
14% of users immediately recognized the change in the
dialog message.

Bravo-Lillo et al.
(2014)

Cross-
sectional

Amazon
Mechanical
Turk

Warning
adherence

Examined four different levels of frequency of exposure to
a dialog message.  Found that increasing the frequency
with which a dialog was displayed caused a threefold
decrease in the proportion of users who immediately recog-
nized a change in the dialog message.

Brustoloni and
Villamarín-
Salomón (2007)

Cross-
sectional 

Laboratory Inferred Found that compared to conventional warnings, a security
warning that randomized the position of its option buttons
resulted in users ignoring the message less frequently in
risky situations.  Attributed this difference to a reduced
habituation effect.  

Egelman et al.
(2008)

Cross-
sectional 

Laboratory Inferred Found a correlation between users disregarding warnings
and recognizing warnings as previously viewed.  Attributed
this correlation to habituation.

Egelman and
Schechter
(2013)

Cross-
sectional 

Laboratory Inferred Found a correlation between users disregarding warnings
and recognizing warnings as previously viewed.  Attributed
this correlation to habituation.

Krol et al.
(2012)

Cross-
sectional 

Laboratory Inferred Observed that 81% of participants ignored a download
warning.  Of these, 56% later claimed they ignored the
warning because of daily exposure to warnings in general.

Schechter et al.
(2007)

Cross-
sectional 

Laboratory Inferred Presented participants with increasingly alarming security
warnings in an online-banking experimental task.  Despite
this, the majority of users continued to ignore the warnings. 
Subsequent studies (e.g., Bravo-Lillo et al. 2013) pointed to
this finding as evidence of habituation.

Sotirakopoulos
et al. (2011)

Cross-
sectional 

Laboratory Inferred Experimentally compared adherence to a variety of web-
browser SSL warnings.  Observed no significant differ-
ences across treatments (i.e., adherence was poor in every
treatment).  Attributed this finding to habituation.

Sunshine et al.
(2009)

Cross-
sectional 

Laboratory Inferred Observed that participants remembered their responses to
previous interactive security warnings and applied them to
new warnings, even if the level of risk or context changed. 
Attributed this result to habituation.
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posures and rather rely on the mental model within a com-
puting session and over time (Rankin et al. 2009).  In
summary, we hypothesize the following:

H1a. Users habituate to warnings within a computing
session. 

H2a. Users habituate to warnings in computing
sessions across days.

We hypothesize that users will habituate more slowly to poly-
morphic warnings—warnings that change their appearance
with repeated exposures (Anderson, Vance et al. 2016b)—
than to static warnings.  Wogalter (2006, p. 55) states that
“habituation can occur even with well-designed warnings....
Where feasible, changing the warning’s appearance may be
useful in reinvigorating attention switch previously lost
because of habituation.”  In terms of dual-process theory,
users compare the current stimulus with a mental model of the
stimulus as it was previously experienced.  If a new or
changed stimulus is experienced that does not match the
mental model, users will give attention to the novel stimulus
and the response strength will recover (Sokolov 1963).  This
process is known as sensitization (Groves and Thompson
1970) and counteracts habituation (Rankin et al. 2009). 
Consequently, changing the appearance of a warning will
cause sensitization, and users will habituate less to poly-
morphic warnings at both neural and behavioral levels (Barry
2009).

We predict that polymorphic warnings will engender sensiti-
zation, reducing habituation within a single computing session
as well as between computing sessions over multiple days. 
Within a computing session, polymorphic warnings slow
habituation because the warning does not match the brain’s
mental model of the warning, resulting in a weaker and less
stable mental model of the warning in the future (Cooke et al.
2015; Thompson 2009).  Consequently, when users encounter
a polymorphic warning in a future computing session, it may
contradict this weaker mental model and be perceived as
novel.  In summary, we hypothesize the following:

H1b. Users habituate less to polymorphic warnings
than to static warnings within a computing
session.

H2b. Users habituate less to polymorphic warnings
than to static warnings across days.

Response Recovery

Although users will habituate to warnings, we predict that
they will partially recover from the habituation after a day’s

rest period without seeing warnings.  As habituation is a form
of learning, it is subject to normal forgetting processes over
time (Staddon 2005; Wixted 2004).  When a warning is with-
held for a day, the mental model of the warning will become
weaker.  When users see this warning in the future, it will be
less likely to match the mental model and will appear novel. 
In response to this novelty, the response strength will recover
and the sensitization process will increase a person’s attention
to the warning, countering habituation (Terry 2015).

Although the mental model diminishes with time, it is
unlikely to fade completely within a single day.  The brain
will still inhibit the behavioral response to the stimulus and
habituation will occur.  However, this response inhibition or
habituation is likely to be weaker when users see a warning
after it has been withheld for a day compared to when they
see it repeatedly within a single computing session (Rankin et
al. 2009).  In summary, we hypothesize the following:

H3a. If warnings are withheld after habituation
occurs, the response recovers at least partially
the next day.

We predict that the amount of recovery from day to day will
be greater for polymorphic warnings than for static warnings.
As previously discussed, the mental models of polymorphic
warnings are weaker and less stable than the models of static
warnings.  Less stable mental models fade more quickly than
stable models (Rankin et al. 2009; Wagner 1976).  Thus, after
users have not seen a warning for a day, they are more likely
to perceive the polymorphic warning as more novel than static
warnings and recovery will increase.

Further, as the polymorphic warning continues to change its
appearance from the previous day, it is even more likely to
differ from the existing mental model, weakening the
behavioral inhibition, increasing sensitization, and enhancing
response recovery (Rankin et al. 2009).  Conversely, with
static warnings, response recovery will be weaker because the
mental model is more robust, reinforced by repeatedly seeing
the same warning on previous days (Grill-Spector et al. 2006;
Groves and Thompson 1970).  The behavioral response will
be inhibited to a greater degree, and habituation will be more
influential (Rankin et al. 2009).  In summary, we hypothesize
the following:

H3b. If warnings are withheld after habituation
occurs, response recovery is stronger for poly-
morphic warnings than for static warnings the
next day.

We predict that the amount of recovery between days will
decrease as users continue to see security warnings day after
day.  For example, if users see a warning three days in a row,
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their response recovery will be weaker between days 2 and 3
compared to between days 1 and 2, and so on.  This weak-
ening recovery occurs because users’ mental models of the
warning become stronger and more stable as they view
warnings across additional computing sessions (Cooke et al.
2015; Groves and Thompson 1970).  As a result, the behav-
ioral response will be inhibited to a greater degree each
successive day and the degree of habituation to the warning
will be greater.  In summary, we hypothesize the following: 

H4a. The amount of recovery will decrease across
days.

Finally, we predict that response recovery across days will
decrease less for polymorphic warnings than for static
warnings.  The mental models of polymorphic warnings will
be less accurate and stable than the mental models of static
warnings.  Because polymorphic warnings change their
appearance, the neural response will not be inhibited (Sokolov
1963; Wagner 1979) and sensitization will counter the
habituation (Groves and Thompson 1970).  Therefore, the
amount of recovery each day will be greater for polymorphic
warnings than for static warnings, and response recovery will
decrease less for polymorphic warnings than for static
warnings (Sanderson and Bannerman 2011).  In summary, we
hypothesize the following:

H4b. The amount of recovery will decrease less for
polymorphic warnings than for static warnings
across days.

Polymorphic Warning Design

Anderson, Vance et al. (2016b) developed 12 polymorphic
warning artifacts based on an extensive review of the
warning-science literature.  Through testing of the different
polymorphic variations using fMRI data, they found four of
the variations maintained attention better than the rest: 
(1) including a pictorial symbol, (2) changing the warning’s
background color to red, (3) using a “jiggle” animation when
the warning appears, and (4) using a zoom animation to make
the warning increase in size.  Figure 1 shows each variation
for one sample warning with its supporting sources.  Given
this support, we used these four variations for our poly-
morphic warning to test our hypotheses.

We evaluate the effectiveness of polymorphic warnings over
time using NeuroIS.  NeuroIS can be an effective approach
for the evaluation of IT artifacts (vom Brocke and Liang
2014), and it has previously been shown to be effective in
examining security warnings specifically (Jenkins et al. 2016;
Vance et al. 2014).  Riedl, Davis, and Hevner (2014, p. ii)

explain that NeuroIS measures are beneficial “to the design of
ICT artifacts.”  Riedl, Banker et al. (2010, p. 250) explain that
“IS researchers could use the theory of controlled and auto-
matic brain processes to .  .  .  allow for a better design of IT
artifacts and other interventions.”  Further, Dimoka et al.
(2011) argued that NeuroIS measures should be used as
dependent variables in evaluating IT-artifact designs:

Rather than relying on perceptual evaluations of IT
artifacts, the brain areas associated with the desired
effects can be used as an objective dependent
variable in which the IT artifacts will be designed to
affect (p. 700).

We used this approach to evaluate our polymorphic warning
design.

Methodology

To test our hypotheses, we conducted two complementary
experiments.  Using fMRI and eye tracking, Experiment 1
directly measured habituation in the brain over time with
repeated exposure to warnings.  However, it did not measure
actual behavior and had various ecological validity limitations
(described in the “Discussion” section).  In contrast, Experi-
ment 2 measured how warning adherence decreases over time
with repeated exposure to warnings in a more ecologically
valid field experiment.  However, Experiment 2 did not
directly measure habituation in the brain.  The results of both
experiments, therefore, evaluate habituation theory from
different perspectives (see Figure 2).  This is consistent with
the observation that “no single neurophysiological measure is
usually sufficient on its own, and it is advisable to use many
data sources to triangulate across measures” (Dimoka et al.
2012, p. 694).  Together, Experiments 1 and 2 provided a
powerful evaluation of habituation and its effect on behavior,
and whether polymorphic warnings, as an IT artifact, can
substantially reduce habituation and improve warning
adherence over time.

Experiment 1:  fMRI

In Experiment 1, we built on prior fMRI habituation research
by examining habituation in the brain in response to static and
polymorphic warnings through repeated exposure to the
stimuli over the course of a workweek.  In addition, we
sought to understand potential response recovery associated
with the rest periods within the time frame of the experiment.
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Message Content:  Pictorial symbols (e.g., an exclamation
point; Kalsher et al. 1996; Sojourner and Wogalter 1997)

Warning Appearance:  Color (Braun and Silver 1995;
Rudin-Brown et al. 2004)

Animation:  Jiggle scale/zoom (Bravo-Lillo et al. 2013; Furnell 2010; Leung 2009)

Figure 1.  Clockwise from Top Left:  Symbol, Background Color, Zoom, and Jiggle Variations

Figure 2.  Comparison of Experiments 1 and 2

Experiment 1:  Context

To test our hypotheses, we conducted a multimethod NeuroIS
experiment, simultaneously collecting both fMRI and eye-
tracking data.  This allowed us to capitalize on the strengths
of each method while mitigating their limitations (Venkatra-
man et al. 2015).  We used these methods to directly measure
the effect of the IT artifact (security warnings) on the
underlying neurocognitive process of habituation.

A neural manifestation of habituation to visual stimuli in the
brain is called repetition suppression (RS)—the reduction of
neural responses to stimuli that are repeatedly viewed, which is
a robust indicator of habituation (Grill-Spector et al. 2006). We
used the differential RS effect in various brain regions to map
sensitivity to repetitive security warning stimuli.  In our case,
the high spatial resolution afforded by fMRI (Dimoka 2012)
was important because it allowed us to disentangle RS effects
from sensory adaptation or fatigue effects (Rankin et al. 2009).
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Concurrent with the fMRI scan, we used an eye tracker to
measure the eye-movement memory (EMM) effect—another
robust indicator of habituation (Ryan et al. 2000).  The EMM
effect manifests in fewer eye-gaze fixations and less visual
sampling of the regions of interest within the visual stimulus. 
Memory researchers have discovered that the EMM effect is
a pervasive phenomenon in which people unconsciously pay
less attention to images they have viewed previously (Smith
and Squire 2017).  With repeated exposure, the memories
become increasingly available, thus requiring less visual
sampling of an image (Heisz and Shore 2008).

One strength of eye tracking is its temporal resolution, which
allows researchers to measure with millisecond precision the
attentional process of participants’ responses to repeated
stimuli.  Thus, fMRI (with high spatial resolution) and eye
tracking (with high temporal resolution) complement each
other, measuring both a behavioral manifestation of attention
(i.e., eye movements) and the neural activity that drives
attention.

Experiment 1:  Method

Participants

We recruited 16 participants from a large U.S. university (8
male, 8 female); this number of participants is consistent with
other fMRI studies (Dimoka et al. 2012).  Participants were
between 19 and 29 years of age (mean 23.3 years), were right-
handed, were native English speakers, had normal or
corrected-normal visual acuity, and were primarily Microsoft
Windows users.  One subject was excluded from the study
due to a scanner malfunction, resulting in 15 total participants
(8 male, 7 female).2  Each participant engaged in five fMRI
scans:  one scan at the same time each day for five consecu-
tive days.  Upon arrival, participants were screened to ensure
MRI compatibility.  They were then given instructions about
the task and placed in the scanner.  Each scan lasted 30
minutes, beginning with a structural scan and followed by two
functional scans that displayed the warnings and images.

Experiment Design

For each participant, warning stimuli were randomly assigned
to conditions that remained the same across the five-day
experiment.  In addition, the order of the presentation of the
warning stimuli was randomized per participant, per day, as
described below and pictorially in Figure B1 of Appendix B. 
First, 40 images of various computer-security warnings (e.g.,
browser malware and SSL warnings, antivirus software
warnings, and software signing errors) were randomly split
into two pools:  one for the static condition and the other for
the polymorphic condition.  The 20 warnings in the static
condition were repeated four times at random times each day
over the course of the study (20 static warnings × 4 repetitions
= 80 static warning images to display).

The four polymorphic variations were then applied to the 20
warnings in the polymorphic pool so that each of the poly-
morphic variations randomly appeared once a day during the
experiment.  For each polymorphic warning, all four poly-
morphic variations were shown each day (20 polymorphic
warnings × 4 variations = 80 polymorphic images to display).
The order of these variations was randomized so that each day
had a different presentation order for the variations of each
warning.

Next, 120 images of general software (e.g., Windows Ex-
plorer, Control Panel, Microsoft Outlook) were also randomly
split into two sets.  The first set consisted of 20 images that
were randomly repeated four times each day (20 general
software images × 4 repetitions = 80 general software images
to display).  The remaining 100 images were divided evenly
across days so that a new set of 20 images were randomly
displayed each day.  These images were used to create a base-
line of unique presentations throughout the task.  By com-
paring the responses for each repeated image to the unique
baseline images, we could distinguish the habituation effect
from attention decay attributable to participants’ fatigue over
time.

Upon completion of the randomization, there were 260
images to be presented each day (80 static images + 80
polymorphic images + 80 general software images + 20 new
general software images for the day = 260).  These 260
images were randomly displayed across two blocks of 7.7
minutes each, with a two-minute break in between blocks. 
Images were displayed for three seconds each, with a 0.5-
second interstimulus interval.  When participants saw the
warnings, they were required to rate the severity of the con-
tent of the warning on a four-point scale.  They did this using
an MRI-compatible button-input device.  The purpose of this
task was to help keep the participant engaged in a context
relevant to the warnings.

2We conducted a pilot study (Anderson et al. 2014) that revealed a large
estimated effect size for the repetition effect (partial eta2 = .7).  Using this
estimated effect size, an a priori power analysis indicated that we would need
four subjects to achieve power greater than .8.  The low sample size required
for adequate power is due to the large effect size and is not typical of
NeuroIS research, where samples of 15 to 25 participants are common.  For
example, Anderson, Vance et al. (2016b), n = 25; Jenkins et al. (2016), n =
24; Dimoka (2010), n = 15; Riedl, Hubert, and Kenning (2010), n = 20;
Riedl, Mohr et al. (2014), n = 18; Warkentin et al. (2016), n = 17.

MIS Quarterly Vol. 42 No. 2/June 2018 361



Vance et al./Tuning Out Security Warnings

Protocol

Scan sessions occurred at the same time each day over a
period of five days for each participant, resulting in five scans
per participant.  Upon arrival at the facility, participants com-
pleted a screening form to ensure MRI compatibility.  Partici-
pants were verbally briefed about the MRI procedures and the
task and were then situated lying on their backs in the scan-
ner.  Visual stimuli were viewed using a mirror attached to the
head coil; this reflected a large monitor outside the scanner
that was configured to display images in reverse so they
appeared normal when viewed through the mirror.

We first performed a 10-second localizer scan, followed by a
7-minute structural scan.  Following these scans, we started
the experimental task.  We used SR Research Experiment
Builder software to display the stimuli and synchronize the
display events and scanner software.  The total scan time was
26.6 minutes for each day.  Upon completion of the scan on
days 1–4, participants were thanked and reminded of the next
day’s scan.  After the completion of the scan on day 5, partici-
pants were again thanked, debriefed, and given $60 compen-
sation.  All ex post tests revealed that no subjects needed to be
excluded (e.g., due to abnormalities or excessive movement).

Experiment 1:  Analysis

We analyzed each hypothesis separately for the fMRI and
eye-tracking data.  We describe each analysis below, followed
by the testing of our hypotheses.

fMRI Analysis

MRI data were analyzed with the Analysis of Functional
NeuroImages (AFNI) suite of programs (Cox 1996).  Details
of our scans and procedures can be found in Appendix B. 
Whole-brain, multivariate model analyses were conducted on
the fMRI data to identify significant clusters of activation, or
regions of interest (ROIs), that demonstrated activation con-
sistent with the hypothesized pattern.  All of our hypothesis
tests utilized the same ROIs.  Figures 3 and 4 graph the
activation in two of the brain regions for polymorphic and
static warnings analyzed across repetitions and across days. 

Eye-Tracking Analysis

Eye-tracking data were collected using an MRI-compatible
SR Research EyeLink 1000 Plus (see Figure B2 of Appendix
B).  Eye-fixation data were processed with DataViewer soft-

ware (SR Research Ltd., version 1.11.900) to identify fixa-
tions and saccades.  Saccades were defined as eye movements
that met three different criteria:  eye movement of at least .1°,
velocity of at least 30°/second, and acceleration of at least
8,000°/second.  Fixations were defined as periods of time
between the saccades that were not also part of blinks. 
Fixation count was used as the dependent variable in each
analysis.3 

The number of fixations for polymorphic and static warnings
per warning repetition per day is shown in Figure 5.  The
mean and standard deviations of fixation count and fixation
duration per day are shown in Table 2.  Some of the poly-
morphic warnings were animated, which prevented partici-
pants from fixating upon the warning during the animation. 
To control for this, we normalized all intercepts to zero and
controlled for warning type in the analysis, allowing for
individual warning intercepts.  This control allowed us to
focus on and accurately analyze how fixations change over
time as an indicator of habituation.  

H1a Analysis:  Users Habituate to Warnings
Within an Experimental Session

fMRI Analysis:  We conducted a whole-brain, multivariate
model analysis (Chen et al. 2014) on the fMRI data with sex,
day, repetition number, and stimulus type (static warning and
polymorphic warning) as fixed factors.  We then conducted a
linear trend analysis on repetition number, collapsing across
days and stimulus types.  We identified six significant ROIs
where neural responses demonstrated a linear decrease in
activation across repetitions (i.e., regions that demonstrated
habituation).  These regions are listed in Table 3a.  Of particu-
lar note are the left and right ventral visual processing
streams, both of which exhibited robust habituation effects
[left:  F(1,597) = 17.71, p < .001; right:  F(1, 597) = 20.49, p
< .001].  Accordingly, the fMRI data analysis in both right
and left ventral visual processing streams supported H1a (see
Figures 6 and 7).

Eye-Tracking Analysis:  In a linear mixed-effects model, we
included fixation count as the dependent variable and the
subject ID, day number, and warning ID as random factors.
The presentation number was treated as a fixed factor, and

3We chose fixation count as a more appropriate measure of habituation than
fixation duration because the warning stimuli were displayed to subjects for
the same duration.  However, we also replicated all analyses using fixation
duration as the dependent variable.  This analysis is reported in Appendix C.
The hypothesis testing results are the same as those using fixation count as
the dependent variable. 
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Beta values were extracted from a whole-brain analysis for each subject and then averaged across subjects according to
stimulus condition.

Figure 3.  Activity in the Right Inferior Temporal Gyrus in Response to Each Presentation of Static and
Polymorphic Warnings

Beta values were extracted from a whole-brain analysis for each subject and then averaged across subjects according to
stimulus condition.

Figure 4.  Activity in the Right Ventral Visual Pathway in Response to Each Presentation of Static and
Polymorphic Warnings
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Intercepts normalized at 0.

Figure 5.  Change in Eye-Gaze Fixations Across Viewings

Table 2.  Absolute Fixation Count and Fixation Duration by Day

Day 1 Day 2 Day 3 Day 4 Day 5

Fixation count mean milliseconds (ms) 9.1 8.08 8.09 7.71 7.35

Fixation count SD (ms) 2.65 2.18 2.27 2.48 2.32

Fixation duration mean (ms) 2349.55 2204.45 2135.69 2113.39 2081.29

Fixation duration SD (ms) 450.94 325.25 384.14 441.1 444.35

visual complexity4 was included as a covariate.  The analysis
supported H1a:  The presentation number beta was signifi-
cantly negative, indicating that habituation had occurred: 
χ2(1, N = 11,976) = 212.58, p < .001, β = -0.254.  In addition,
visual complexity was significant:  χ2 (1, N = 11,976) = 35.38,
p < .001, β = 0.4533.  The R2 of the model was .26.

H1b Analysis:  Users Habituate Less to Polymorphic
Warnings than to Static Warnings Within an
Experimental Session

fMRI Analysis:  We examined the previous whole-brain,
multivariate model analysis to identify ROIs where there were

significant interactions between stimulus type and the linear
trend over repetition number.  We identified eight ROIs (see
Table 3b).  Beta values were extracted for these regions and
tested using a within-subjects, repeated-measures ANOVA. 
The stimulus type × repetition number interaction supported
H1b.

Eye-Tracking Analysis:  We specified the same mixed-effects
model as in H1a, except that we included an interaction term
between presentation number and whether or not the warning
was polymorphic.  The eye-tracking analysis supported H1b. 
Both main effects for presentation number [χ2 (1, N = 11,976)
= 159.95, p < .001, β = -0.309] and polymorphism [χ2 (1, N =
11,976) = 78.89, p < .001, β = -0.849] were significant, as
were the interaction [χ2 (1, N = 11,976) = 10.15, p < .001, β =
0.1096] and visual complexity [χ2 (1, N = 11,976) = 82.79, p
< .001, β = -0.4734].  The R2 of the model was .266.4Visual complexity was calculated through a script in MATLAB (Rosenholtz

et al. 2007).
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Table 3.  Regions of Interest (ROIs) for Habituation Within Experimental Sessions

(a) ROIs for Main Effect of Repetition

Region # Voxels Peak x Peak y Peak z F Value p Value

R. ventral visual stream 569 -28 58 -15 20.49 < .001

L. inferior frontal gyrus 479 49 -10 33 29.87 < .001

L. ventral visual stream 418 28 88 18 17.71 < .001

B. dorsomedial prefrontal cortex 111 -1 -7 48 17.75 < .001

R. inferior frontal gyrus 101 -49 -10 33 15.11 < .001

L. posterior middle temporal gyrus 90 55 46 6 16.23 < .001

(b) ROIs for Repetition by Stimulus-Type Interaction

Region # Voxels Peak x Peak y Peak z F Value p Value

R. superior temporal gyrus 307 -61.5 43.5 9 7.23 < .001

R. anterior insula 255 -46.5 -40.5 6 5.66 .02

R. medial frontal gyrus 76 -1.5 -37.5 33 4.64 .03

L. anterior insula 70 31.5 -13.5 -12 5.73 .02

R. inferior temporal gyrus 70 -46.5 67.5 0 4.91 .03

L. superior temporal gyrus 54 52.5 40.5 21 4.61 .03

L. middle frontal gyrus 53 43.5 -34.5 27 3.87 .05

R.  middle frontal gyrus 51 -31.5 -34.5 42 3.08 .08

Figure  6.  Left and Right Inferior Frontal Gyri Figure 7.  Left and Right Ventral Visual Pathways

Table 4.  Regions of Interest for Habituation Across Days

ROIs for Main Effect of Day

Region # Voxels Peak x Peak y Peak z F Value p Value

R. insula 160 -43 -16 3 67.87 < .001

L. insula 158 40 -16 0 86.19 < .001

ROIs for Day by Stimulus-Type Interaction

Region # Voxels Peak x Peak y Peak z F Value p Value

L. middle frontal gyrus 190 49 -31 18 5.19 .02

L. middle occipital gyrus 118 25 76 39 4.70 .03

MIS Quarterly Vol. 42 No. 2/June 2018 365



Vance et al./Tuning Out Security Warnings

H2a Analysis:  Users Habituate to
Warnings Across Days

fMRI Analysis:  We conducted a whole-brain, multivariate
model analysis to find areas that responded to a linear trend
on day number, collapsing across repetitions and stimulus
types.  This analysis identified two main ROIs:  the right and
left insula.  To quantify the extent of the decrease in these
ROIs, beta values were extracted for these regions and tested
using a within-subjects, repeated-measures ANOVA.  Both
the right [F (1,597) = 67.87, p < .001] and left insula [F
(1,597) = 86.19, p < .001] displayed a significant habituation
effect across days (see Table 4).  Thus, the fMRI analysis
supported H2a.

Eye-Tracking Analysis:  In a linear mixed-effects model, we
included fixation count as the dependent variable and the
subject ID and warning ID as random factors.  The presenta-
tion number (across days) was treated as a fixed factor, and
visual complexity was included as a covariate.  The eye-
tracking analysis supported H2a; the beta of presentation
number across days was significantly negative [χ2(1, N =
11,976) = 212.89, p < .001, β = -.1031], indicating habitua-
tion.  Visual complexity was also significant [χ2(1, N =
11,976) = 34.85, p < .001, β = 0.3815].  The R2 of the model
was .13.

H2b Analysis:  Users Habituate Less to Polymorphic
Warnings than to Static Warnings Across Days

fMRI Analysis:  We conducted a whole-brain analysis for a
day-by-stimulus-type interaction.  Two ROIs, the left middle
frontal gyrus [F(1,595) = 5.188, p < .05] and left middle
occipital gyrus [F(1,595) = 4.697, p < .05], displayed a signi-
ficant habituation interaction across days and between
stimulus types (see Table 4).  

Eye-Tracking Analysis:  We specified the same mixed-effects
model as in H2a, except that we included an interaction term
between presentation number (across days) and whether or
not the warning was polymorphic (coded as 1 for polymorphic
and 0 for static).  The eye-tracking analysis supported H2b;
the interaction between presentation number and polymorphic
warning type was significantly positive [χ2 (1, N = 11,976) =
10.70, p < .001, β = 0.024], indicating that participants
habituate less to polymorphic warnings across days than static
warnings.  Both main effects for presentation number [χ2 (1,
N = 11,976) = 493.42, p < .001, β = -0.115] and polymor-
phism [χ2 (1, N = 11,976) = 64.71, p < .001, β = -0.725] were
also significant.  Visual complexity, however, was not signifi-
cant:  χ2 (1, N = 11,976) = 0.17, p > .05, β = 0.026.  The R2 of
the model was .137.

H3a Analysis:  If Warnings Are Withheld After
Habituation Occurs, the Response Recovers
at Least Partially the Next Day

fMRI Analysis:  We first calculated recovery scores by sub-
tracting the mean beta value of the last display of each
stimulus type from the first display of that stimulus type on
the following day (i.e., Day 2 Display 1 – Day 1 Display 4,
etc.).  A whole-brain, multivariate model analysis was then
conducted to test for regions that displayed changes from
baseline activation, which, collapsing across days, revealed
four ROIs in which significant recovery occurred (see Table
5).  Note that the ROIs identified in this analysis overlapped
considerably with those identified in the analysis of H1a. 
Post hoc analysis comparing specific days showed significant
recovery for days 2–4 in nearly every area, with no significant
recovery on day 5 (see Table 5).  Thus, H3a was supported by
the fMRI data.

Eye-Tracking Analysis:  We subtracted the fixation count for
the first viewing of a warning on one day from the fixation
count for the last viewing of the warning on the previous day. 
We then conducted a t-test to test this hypothesis.  The
analysis supported H3a:  participants experienced signifi-
cantly positive recovery (m = 0.369, SD = 3.171) from day to
day:  t(2377) = 5.672, p < .001, d = 0.233.

H3b Analysis:  If Warnings Are Withheld After
Habituation Occurs, Response Recovery Is
Stronger for Polymorphic Warnings than
for Static Warnings the Next Day

fMRI Analysis:  We analyzed the ROIs found for H3a but
added stimulus type (polymorphic or static) to the model as a
factor.  None of the regions displayed a significant recovery
by stimulus-type interaction (see Table 5); thus, H3b was not
supported.  

Eye-Tracking Analysis:  We subtracted the fixation count for
the first viewing of a warning on one day from the fixation
count for the last viewing of the warning on the previous day. 
We specified a linear mixed-effects model that tested whether
warning type (polymorphic or static) predicted this difference. 
The subject ID, day interval (e.g., the difference between day
1 and day 2 was coded as 1), and warning ID were included
as random factors.  Polymorphism was included as a fixed
factor, and visual complexity was included as a covariate.
The eye-tracking analysis did not support H3b.  Neither the
warning type [χ2 (1, N = 2,400) = 1.92, p > .05, β = -0.166]
nor visual complexity [χ2 (1, N = 2,400) = 1.16, p > .05, β =
0.072] significantly predicted recovery between days.
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Table 5.  Regions of Interest (ROIs) for Recovery
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334 -31 73 -9 4.52 < .001 0.015 .90 2.79 .10 1.02 .31

L. ventral visual
stream

206 40 52 -12 4.00 < .001 0.02 .89 1.33 .25 .004 .95

L. inferior frontal
gyrus

188 40 -1 27 5.31 < .001 0.083 .77 .01 .91 .06 .81

R. inferior frontal
gyrus

54 -37 -1 30 4.35 < .001 1.115 .29 2.06 .15 .66 .42

H4a Analysis:  The Amount of Recovery
Will Decrease Across Days

fMRI Analysis:  Using the recovery scores from H3a, we
tested whether the day interval predicted the difference
between scores in a within-subjects, repeated-measures
ANOVA.  The day interval did not significantly predict
recovery scores in any of the ROIs (see Table 5).  Analysis of
H3a revealed that recovery was significant in the early
periods but not significant in the later periods.  Thus, H4a was
not supported by the fMRI data.

Eye-Tracking Analysis:  We again used the difference in the
fixation count from the last viewing of the warning on the
previous day as our dependent variable.  We used a mixed-
effects model that tested whether the day interval predicted
this difference.  Subject ID and warning ID were included as
random factors.  The day interval was treated as a fixed
factor, and visual complexity was included as a covariate.
The eye-tracking analysis supported H4a.  The day interval
was significantly negative [χ2 (1, N = 2,400) = 2.64, p < .05,
β = -0.093], indicating that the recovery decreased across
days.  Visual complexity was insignificant:  χ2 (1, N = 2,400)
= 1.66, p > .05, β = 0.092.  The R2 of the model was .041.

H4b Analysis:  The Amount of Recovery Will
Decrease Less for Polymorphic Warnings
than for Static Warnings Across Days

fMRI Analysis:  We conducted the same analysis as in H4a
but with stimulus type as a factor in the model.  None of the
four ROIs displayed a significant day-by-stimulus-type inter-

action (see Table 5).  The fMRI data, therefore, did not
support H4b.

Eye-Tracking Analysis:  We specified the same model as in
H4a, with the addition of an interaction term between day
intervals and whether the warning was polymorphic.  The
eye-tracking analysis did not support H4b.  Both main effects
for day number [χ2 (1, N = 2,400) = 0.58, p > .05, β = -0.062]
and polymorphism [χ2(1, N = 2,400) = 0.00, p > .05, β =
-0.015] were nonsignificant; the interaction was also nonsig-
nificant:  χ2 (1, N = 2,400) = 0.30, p > .05, β = -0.063.
Likewise, visual complexity was nonsignificant:  χ2(1, N =
2,400) = 0.94, p > .05, β = 0.071.

Experiment 2:  Behavioral

Although Experiment 1 provided valuable neural insights into
the process of habituation, it did not measure actual warning
adherence.  It also made necessary sacrifices in ecological
validity that may limit the generalizability of the findings to
real life.  The objectives of Experiment 2 were to measure
actual warning adherence in an ecologically valid field
setting.  Experiment 2 improved on Experiment 1 in the
following ways.

First, in Experiment 1 users were exposed to 260 warnings
per day.  In contrast, in Experiment 2 participants only saw a
small number—an average of 4.74 (SD = 1.29) warnings per
day.  Moreover, we used mobile devices as our context, on
which users typically saw multiple notifications and warnings
per day.  An analysis of 40,191 Android users showed that
users on average encounter nearly 26 notifications per day on
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their mobile phones (these notifications include app permis-
sion warnings, app notifications, email notifications, system
notifications, etc.; Shirazi et al. 2014).

Second, in Experiment 1 participants viewed warnings
(1) presented on a laboratory computer, (2) while lying in an
MRI machine, (3) in a laboratory, and (4) at a set time each
day. By comparison, in Experiment 2 participants viewed
warnings (1) presented on their personal mobile devices, (2)
in their natural environment, (3) at a place of their choosing,
and (4) at a time of their choosing, which varied each day.

Third, Experiment 1 examined habituation of attention in
terms of neural correlates and eye-tracking fixations but did
not measure warning adherence itself.  It was, therefore,
unknown whether habituation to security warnings did in fact
lead to diminished warning adherence.  Likewise, it was
unclear whether polymorphic warnings were actually effec-
tive in improving warning adherence over time.  In contrast,
Experiment 2 used warning adherence as the dependent
variable.  This allowed us to observe how repeated exposure
to warnings influences warning adherence over time, as well
as whether polymorphic warnings are effective in improving
warning adherence.

Fourth, Experiment 1 examined habituation in the brain for a
workweek of five days.  While this allowed us to observe
recovery effects over time, it may have been too short to ob-
serve whether people accepted polymorphic warnings from a
usability standpoint or instead learned to ignore them—or,
worse yet, disliked the forced novelty of the polymorphic
warning design.  By comparison, Experiment 2 observed
participants’ behavior over 3 workweeks or 15 days (three
times as long as Experiment 1).  We were, therefore, able to
assess the effectiveness of polymorphic warnings over a
longer period of time.

In Experiment 2, the participants often saw only one risky
warning per day; thus, we could not test H1a and H1b, both
of which focus on habituation within computing sessions.
However, we were able to test the remaining hypotheses that
address the influence of habituation, recovery, and poly-
morphic warnings across days.

Experiment 2:  Context

In Experiment 2, we monitored participants’ behavior as they
accepted or rejected mobile app permission warnings—that is,
warnings shown before an app is granted access to informa-
tion or resources.  These warnings can be shown when the
app is downloaded or attempts to access a resource (i.e., just-
in-time warnings).  App stores may also display permission
warnings before an app is downloaded (e.g., the Google Play

store displays the permission warnings before downloading if
just-in-time warnings are not used).

Permission warnings are frequent.  By May 2016, 65 billion
Android apps had been downloaded by smartphone users
(Statista 2017), most of which display a permission warning
during installation or use.  Additionally, the average Android
user has 95 apps installed on his or her mobile device (Sawers
2014).  Furthermore, users often experience multiple permis-
sion warnings in a short period of time.  For example, when
evaluating apps, people may download several apps (and,
therefore, see several associated warnings) in a short period
of time.  When using apps with just-in-time warnings, users
will typically see a series of separate permission requests
when first using them.  Mobile apps, therefore, represent a
realistic scenario where people frequently see warnings and
are thus an appropriate context for studying longitudinal
habituation to security messages.  

Experiment 2 involved a third-party Android app store.
Third-party app stores are common on the Android platform
(e.g., Amazon Underground, GetJar, Mobogenie, SlideME,
AppBrain, Aptoide Cloud Store, BAM, Top Apps, AppGratis,
MyApp, MIUI app store, Baidu app store, F-Droid, etc.).
Some of these app stores compete with the Google Play app
store by offering app specials (e.g., free or reduced-price
apps), serving markets that have restricted access to Google
Play (e.g., GetJar in China), or both.  Others complement the
Google Play store by providing customized experiences (e.g.,
app of the day, in-depth app reviews, categorized apps,
recommended apps) with apps that link directly to the Google
Play store (e.g., AppGratis).  Some of these app stores are
standalone apps that can be downloaded (e.g., Amazon
Underground), while others must be accessed via a web
browser on the Android phone (e.g., Mobogenie).  For
Experiment 2, we created a browser-based, third-party app
store that allowed us to monitor participants’ responses to
permission warnings over time.  

Experiment 2:  Method

Participants

Participants were students recruited from a variety of majors
at a university in the United States.  They received course
credit for their participation in the experiment.  To encourage
continued participation, participants were also given $10 for
completing the first week, $10 for completing the second, and
$20 for completing the third, for a possible total of $40.  Of
an initial group of 134 subjects, 32 failed to participate be-
yond the first 7 days.  Thus, we had 102 valid responses.
These subjects were 61 percent male and had an average age
of 22.1 years (SD = 2 years).
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Figure 8.  Screenshot of the Web-Based App Store Created for the Field Experiment 

Experiment Design

Participants were asked to rank apps on an app store created
specifically for this study (see Figure 8).  This app store
operated as a legitimate app store, and following an IRB-
approved deception protocol to improve realism, participants
were instructed that the app store was unaffiliated with the
research team.  Participants were told that the purpose of the
experiment was to study how people rank apps in various
categories.

The app store presented 10 apps from a different category
each day (e.g., utilities, education, entertainment, travel,
finance, etc.).  Participants were instructed to download,
install, and evaluate three of the 10 apps within the daily
category on their personal Android device and rank each app
from 1 (best) to 3 (worst).  Participants then completed an ap-
parently unaffiliated survey sent via email from the research
team each day that allowed participants to report and rank the
apps they downloaded on that day.  These steps were repeated
each day for three weeks (excluding weekends).

When participants clicked to download an app, they were
shown a permission warning that listed the app’s requested
permissions, as per the Google Play store (for apps that do not
implement just-in-time permissions).  The permissions dis-
played were randomly drawn from two categories:  safe and
risky (see Table 6).  Safe permissions were selected from the
Android Developer Guide (Android 2016) and were chosen

because we determined that they would be thought of by par-
ticipants as low risk across app categories.  We also created
four risky permissions to (1) heighten respondents’ perception
of risk in ignoring the permission warning and installing the
app and (2) ensure that the requested permission was inap-
propriate regardless of the category of app on a given day.

As a second deception to increase realism, although the
research team did in fact control the apps and validated their
security, a set of instructions (presented in Figure 9) was
issued.

Before starting the experiment, participants were required to
pass a short quiz verifying that they knew which permissions
were considered risky by the researchers.  This allowed us to
have an objective measure of security behavior:  whether
people knowingly installed apps with these disallowed per-
missions.  After completing the quiz, we provided participants
with the mobile URL for the app store and the separate URL
for the daily survey.  In addition, we sent two daily reminders
to participants, once in the morning and once in the evening
(if they had not already completed the task that day) to remind
them to download and review three apps from the app store.

We only allowed participants to submit one category evalua-
tion each day (we told them that this was a feature of the app
store).  This ensured that participants viewed a realistic
number of permission warnings each day.  Further, partici-
pants had to evaluate a new category each day so that they did
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Table 6.  Safe and Risky Permissions Displayed in the App Store Permission Warnings

Safe Permissions

Send notifications Set an alarm

Pair with Bluetooth devices Alter the phone’s set time zone

Change the size of the status bar Change the phone’s displayed wallpaper

Install shortcut icons Uninstall shortcut icons

Connect to the Internet Use vibration for notifications or interactions

Change phone volume and audio settings Temporarily prevent phone from sleeping (for viewing videos)

Ask permission to download additional features

Risky Permissions

Charge purchases to your credit card Record microphone audio any time

Delete your photos Sell your web-browsing data

Be aware that the research team is not affiliated with App-Review.org in any way, so we cannot verify that the apps are all safe.  Before you
download an app, be sure to check the permissions that the app requires.  This app store displays the permissions before directing you to
the Google Play store.

Make sure that the permissions required by the app do not contain any of the following:
• Charge purchases to your credit card
• Delete your photos
• Record microphone audio any time
• Sell your web-browsing data

If the app has any of these permissions, DO NOT download it.  These apps are potentially dangerous and can harm your privacy and/or
phone.  Not only is your own device at risk if you install these apps, but also if you positively review these apps, it will put future users at
risk.  Therefore, if you review too many apps with dangerous permissions, you may not receive the course credit for this experiment.

Figure 9.  Participant Instructions for the Field Experiment

The leftmost warning shows the appearance of the warning in the static condition.  The other three warnings are a sample of the 15
variations used in the polymorphic condition.

Figure 10.  Sample Static and Polymorphic Permission Warnings
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Figure 11.  Three Stages of “Flip,” One of Eight Animated Polymorphic Warnings Variations

not evaluate the same app twice.  Importantly, apps in each
category were not well-known apps, reducing the likelihood
that participants trusted a particular brand.

Each category had 10 apps to choose from.  When clicking on
the “Download” button on an app, the app store displayed the
permission warning for the app (see Figure 10, leftmost screen-
shot).  If the user accepted the permission warning, the app
store completed the app installation through Google Play—a
pattern shared by many of the “customized experience” app
stores (e.g., Mobile App Store, Cloud Store, BAM, Top Apps,
AppGratis).  Participants did not see a permission warning
again through Google Play when the app was downloaded.

Dependent Variable 

Our dependent variable was warning adherence, which we
operationalized as a binary variable:  whether or not partici-
pants rejected apps with risky permissions.  We randomized
the permissions for each warning to ensure that participants
would encounter at least one risky permission among the first
three apps they selected.  Each app selected beyond the first
three had a 50 percent chance of displaying a risky permis-
sion.  The experimental app store recorded whether or not
participants ignored permission warnings containing a risky
permission.

Experimental Conditions

We implemented a between-subject study design in which
participants were randomly assigned to either the static or

polymorphic warning condition when they first created an
account on the app store.  Users were required to log in to the
app store, which ensured they had the same condition across
all three weeks.  The static warning condition always had the
same look and feel for the duration of the experiment, al-
though the requested permissions changed for each app.  In
contrast, the polymorphic warning condition randomly
changed the appearance of the permission warning each time
it was shown.

We created 16 variations of the polymorphic warning; one-
half of these involved animations and one-half did not.
Further, for each participant, we randomly iterated through
four polymorphic warning variations every four days.  This
was done to maintain the novelty of the polymorphic treat-
ment.  We deliberately set the interval for changing the poly-
morphic versions at the fourth day of each set so we would be
able to detect if the level of habituation changed due to the
warning treatments rather than being due to the weekend and
time away from the task.  Example static and polymorphic
warnings are shown in Figures 10 and 11.  See Appendix D
for all warning variations.

Daily Survey

After downloading and installing three apps, participants
completed a survey from the research team.  The survey asked
participants to list and rank the three apps they had
downloaded as 1 (best) to 3 (worst) for the daily category. 
We deliberately branded the survey as coming from the
researchers, and not the app store, so it would appear that the
two were not connected.  This helped promote the story that
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the app store was not affiliated with the researchers and,
therefore, could contain risky apps.  To ensure that partici-
pants actually downloaded the apps from the app store, we
enabled a “sharing” feature in the store through which parti-
cipants shared with us which apps they had downloaded.
Although we actually captured all behavioral data in the app
store regardless of this functionality, the feature again helped
promote the story that the app store was not associated with
the research team.

Debriefing Survey

At the end of the three-week experiment, participants received
a debriefing survey.  In the survey, participants were asked,
“How concerned were you about each of the following
permissions?” and were then presented with the permissions
listed in Table 6.  The response scale was 1 “Not at all con-
cerned” to 7 “Extremely concerned.” The average for risky
permissions was 6.03 (SD = 1.40), while the average for safe
permissions was 1.97 (SD = 1.34), a significant difference (t
= -38.9, df = 653.9, p < .001).  This indicated that participants
did see a difference in concern for the two categories of per-
missions.  We also asked a manipulation check question to
ensure that participants in the experimental condition noticed
the polymorphic treatment (Straub et al. 2004).  All partici-
pants in the polymorphic condition responded affirmatively.

Experiment 2:  Analysis

We limited our data to participants who completed at least
one-half of the days (seven days or more) of the experiment.
This resulted in 102 participants—55 in the static condition
and 47 in the polymorphic condition—who, all together,
viewed 7,248 warnings over three weeks or 15 weekdays.
This amounted to an average of 4.74 (SD = 1.29) permission
warnings viewed per weekday, per participant.  Of these,
2,695 (about one-third) were apps with risky permissions.
Thus, the N for our analysis was 2,695.

To analyze our data, we specified a logistic linear mixed-
effects model because it is robust to uneven observations
(Cnaan et al. 1997).  In other words, the analysis was robust
even if participants saw a different number of warnings each
day.  Linear mixed-effects modeling also allows for the inclu-
sion of fixed effects (observations that are treated as
nonrandom or nonindependent) and random effects (obser-
vations that are treated as random or independent).  Thus, we
accounted for the within-subject nature of our experiment by
including the participant identifier as a random effect.  Fin-
ally, the logistic linear mixed-effects model was designed to
handle binary dependent variables, such as ours (McCulloch
and Neuhaus 2001).

To test H2a, we included the warning number (how many
warnings the participant had seen up to that point) as a fixed
effect to measure the stimulus repetition.  We also included
the treatment as a binary fixed effect (1 = polymorphic
warnings, 0 = static warnings).  We then included an inter-
action effect between warning number and treatment to test
H2b.  To test H3a, we included a binary variable of whether
the participant saw the risky warning after a recovery period
of a day or more (1 = recovery period, 0 = no recovery
period).  We then added an interaction between the recovery
period and treatment to test H3b.  To test H4a, we included an
interaction term between the recovery period and what day of
recovery it was for the participant (i.e., the recovery period
after the first day, second day, etc.).  Finally, to test H4b, we
added the treatment to the prior interaction term (resulting in
a three-way interaction) to see if the effect of the prior
interaction differed by treatment.  As stated previously, our
dependent variable was whether the user adhered to a warning
containing a risky permission and canceled their installation
of the app (coded as 1), or disregarded the warning and
installed the app anyway (coded as 0).

The results are shown in Table 7.  The warning number
negatively predicted whether the user rejected the app with
the risky permission (β = -0.027, p < .001).  Over the course
of the three-week experiment, average adherence substantially
dropped from 87 percent to 64 percent, a significant differ-
ence of 23 percent (x2 = 14.514, df = 1, p < .001).  Thus, H2a
was supported.  Likewise, the interaction between warning
number and treatment was significant (β = 0.015, p < .01).
Participants’ accuracy in rejecting risky permission warnings
decreased more slowly when viewing polymorphic warnings
compared to static warnings, supporting H2b.  Note that the
prior two estimated coefficients (β) are relatively small (com-
pared to the coefficient of the recovery period discussed
below) because they represent the amount by which the log
odds of adherence would change for each incremental
warning.  Thus, the overall effect is additive for each addi-
tional warning a user sees, which can add up quickly.  Finally,
the recovery period significantly influenced warning adher-
ence, supporting H3a (β = 0.787, p < .05).  H3b, H4a, and
H4b were not statistically significant, which is consistent with
the fMRI analysis.  To examine the effect size of these predic-
tors, we examined both R2 and changes in the percentage of
adherence.  First, the conditional R2 (R2 associated with the
random effects) of the model was .352, and the marginal R2

was .098 (R2 associated with the fixed effects). 

Second, to explore the extent of the interaction between
warning number and treatment, we graphed the trends.  Figure
12 displays how each treatment group’s accuracy rate (percent
correct in rejecting risky apps) changed over the three-week
(15-day) experiment as well as trend lines fitted to the data.
Interestingly, after the three weeks, the accuracy rate of parti-
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Table 7.  Logistic Mixed-Effects Model Results Predicting Whether Participants Rejected Apps with
Risky Permissions

Estimate Std. Error z-value p-value Hypothesis

Intercept 2.082 0.216 9.642 < .001 —

Warning Number -0.027 0.003 -8.714 < .001 H2a

Polymorphic Treatment 0.238 0.334 0.712   .238 —

Recovery Period 0.787 0.414 1.900 < .05 H3a

Warning Number × Polymorphic Treatment 0.015 0.005 2.947  < .01 H2b

Recovery Period × Polymorphic Treatment 0.055 0.630 0.088 .465 H3b

Recovery Period Number × Recovery Period -0.008 0.008 0.998  .159 H4a

Recovery Period Number × Recovery Period ×
Polymorphic Treatment

-0.013  0.013 -1.058  .145 H4b

Figure 12.  Percentage of Warning Adherence in Rejecting Risky Warnings Across 15 Weekdays for
Each Treatment Group

cipants in the polymorphic condition was 76 percent, whereas
the accuracy of participants in the static condition was 55
percent.  This difference of 21 percent was significant (x2 =
7.172, df = 1, p < .01).  Overall, accuracy in the polymorphic
condition dropped from 87 percent at the start of the three
weeks to 76 percent at the end.  In contrast, accuracy in the
static condition dropped from 87 percent to 55 percent.

Discussion

Table 8 summarizes our results.  We note that although the
dependent variables, methods, and experimental designs of
Experiments 1 and 2 were quite different, they were consis-
tent overall in their tests of the hypotheses.  We discuss our
contributions below.
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Table 8.  Summary of Results

Hypothesis

Experiment 1: Experiment 2: 
BehaviorEye Tracking fMRI

H1a:  Users habituate to warnings within an experimental session Supported Supported Not tested

H1b:  Users habituate less to polymorphic warnings than to static
warnings in an experimental session

Supported Supported Not tested

H2a:  Users habituate to warnings across days Supported Supported Supported

H2b:  Users habituate less to polymorphic warnings than to static
warnings across days

Supported Supported Supported

H3a:  If warnings are withheld after habituation occurs, the response
recovers at least partially the next day

Supported Supported Supported

H3b:  If warnings are withheld after habituation occurs, response
recovery is stronger for polymorphic warnings than for static warnings
the next day

Not supported Not supported Not supported

H4a:  The amount of recovery will decrease across days Supported Not supported Not supported

H4b:  The amount of recovery will decrease less for polymorphic
warnings than for static warnings across days

Not supported Not supported Not supported

This paper makes three principal contributions to the field of
information systems:  (1) measuring habituation of attention
to security warnings longitudinally, including response decre-
ment and recovery; (2) examining the effect of habituation on
warning adherence in the field; and (3) demonstrating that
polymorphic warnings are effective in reducing habituation
over time in terms of both diminished attention and warning
adherence.  We discuss each of these points below.  

First, measuring habituation directly in terms of neural
activity and eye tracking is valuable because brain activity
“can be used as a mediator between the IT artifact and IT
behavior” (Riedl and Léger 2016, p. 20), which can allow
researchers to understand not only how people behave but
why they behave that way.  Neurobiology plays a key role in
security behavior because habituation is an unconscious
mental process that is difficult to measure without neuro-
physiological methods (Dimoka et al. 2011).  These contribu-
tions are discussed further in Appendix E.

We extend prior research by showing how habituation
develops over time.  The longitudinal nature of our experi-
ments allowed us to capture these hidden mental processes
over the course of several days.  We were able to capture not
only the response decrement in the habituation process but
also the daily recovery or increase in response strength. 
Although our findings do not support a greater recovery
(increased response to stimuli after a rest period) associated
with the polymorphic warnings, they do demonstrate that
withholding warnings for a time can help increase sensitivity
and response to warnings.

Further, in our attempts to develop IT artifacts that are more
resistant to habituation, neurophysiological tools can be used
to instruct developers on the neural mechanisms influencing
the response to the IT artifact (Riedl and Léger 2016).  Speci-
fically, these tools can capture the effects of the IT artifacts on
users more objectively than traditional measures (vom Brocke
et al. 2013).  In addition, by using both fMRI and eye
tracking, we demonstrated that the latter is a valid measure of
habituation that can be used in more ecologically valid
settings.
 
Second, whereas previous studies have examined habituation
in laboratory settings (see Table 1), we demonstrated in
Experiment 2 how habituation affects actual warning adher-
ence in the field.  This is an important contribution in terms of
ecological validity because habituation is inseparably related
to the frequency of stimuli received.  Due to memory effects
and other factors, people may exhibit different patterns of
habituation to multiple warnings in a one-hour laboratory
session than they would to the same number of warnings over
the course of a day.  This is necessarily the case even if the
number of warnings presented in a one-hour laboratory
session is proportionally accurate to the number of warnings
received over an entire day (see Figure 13) because the time
period over which the warnings are displayed is compressed.
Thus, it is not possible to conduct a laboratory experiment of
habituation to warnings in a perfectly ecologically valid way.5

5We thank the associate editor and an anonymous reviewer for clarifying
these points, and the associate editor for Figure 13.
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Figure 13.  Habituation to Warnings in Compressed, Yet Proportionally Accurate, Time Frame May Not
Necessarily Equal Habituation in a Natural, True-to-Life Time Frame

This problem is exacerbated when an unrealistically high
number of warnings is presented in laboratory sessions (such
as in Anderson, Jenkins et al. 2016; Anderson, Vance et al.
2016b; Bravo-Lillo et al. 2014; Bravo-Lillo et al. 2013; Brus-
toloni and Villamarín-Salomón 2007; and Experiment 1).  As
a consequence, it is unclear how previous findings of labora-
tory experiments correspond to real-life habituation and
warnings.

Experiment 2 contributes by providing an ecologically valid
field experiment design that for the first time showed how a
realistic repetition of warnings in the field (an average of 4.74
warnings per day over three weeks) results in a decrease of
warning adherence.  The results of Experiment 2 are consis-
tent with habituation theory and the neuroimaging and eye-
tracking results of Experiment 1, providing strong evidence of
the negative influence of habituation on warning adherence. 
Interestingly, the results of Experiment 2 show a pattern of
habituation that is similar to those of laboratory experiments
that measure habituation in a condensed and artificial way. 
Therefore, Experiment 2 also contributes by validating past
results and suggesting that laboratory experiments can serve
as useful proxies for real-world habituation to warnings.

An additional contribution of our field study design is that it
allowed us to show how habituation of attention to security
warnings maps to actual behavior.  A weakness of Experiment
1 and past studies of habituation (Anderson, Jenkins et al.
2016; Anderson, Vance et al. 2016b) is that they assumed that
habituating to security warnings would result in lower
warning adherence (i.e., behavior).  However, this may not
necessarily be the case—it is possible that users pay dimin-
ished attention to a warning and still exhibit high warning
adherence because they already recognize the warning and
have consciously decided to respond in a secure way.  Experi-
ment 2 contributes by showing that adherence decreases
significantly with each exposure to a warning.  Over the
course of the three-week experiment, average adherence

substantially dropped from 87 percent to 64 percent, a signi-
ficant difference of 23 percent.

Third, although previous research has proposed polymorphic
warnings (Anderson, Jenkins et al. 2016; Anderson, Vance et
al. 2016b), the design was only evaluated cross-sectionally,
despite the fact that habituation is a phenomenon that
develops over time.  As a result, it was unclear whether poly-
morphic warnings would maintain their advantage over time
or lose their saliency to the point that users would react to
static and polymorphic warnings in the same way.  Moreover,
their designs only examined the effect of polymorphic
warnings on attention, rather than on behavior itself.  There-
fore, it was unknown whether higher levels of attention paid
to polymorphic warnings would translate to improved behav-
ior or if users would become indifferent—or worse, respond
negatively—to them over time.

This study contributes by addressing these questions.  In
Experiment 1, we showed that polymorphic warnings main-
tained substantially higher levels of attention over the five-
day experiment—both in terms of neural and eye-gaze
activity—compared to static warnings.  In addition, in Experi-
ment 2 we demonstrated that polymorphic warnings sustain
substantially higher levels of warning adherence compared to
static warnings.  Although users did habituate to the poly-
morphic warnings, the rate of habituation was significantly
slower than that of static warnings, as evidenced by the
significant interaction between the warning exposure number
and the polymorphic treatment.  Further, after three weeks,
the warning adherence rate of participants in the polymorphic
condition was 76 percent, compared to 55 percent for those in
the static condition, a significant difference of 21 percent.
Overall, accuracy in the polymorphic condition dropped from
87 percent at the start of the three weeks to 76 percent at the
end.  In contrast, accuracy in the static condition dropped
from 87 percent to 55 percent.
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Moreover, although participants were conscious of the poly-
morphic warnings (100 percent of participants in the experi-
mental treatment correctly answered the manipulation check
question in our post-survey), their warning adherence was sig-
nificantly higher compared to those in the static group.  This
indicates that the polymorphic design had a sustained advan-
tage both in higher attention and adherence over time, pro-
viding a clear contribution to the IS security literature.

Finally, Experiments 1 and 2 complement each other and
together provide the most complete test yet of habituation
theory as applied to security warnings.  Experiment 1 directly
measured habituation in the brain over time with repeated
exposure to warnings.  However, it did not measure actual
behavior.  In contrast, Experiment 2 measured how warning
adherence decreases over time with repeated exposure to
warnings, but it did not measure habituation directly.  The
results of both experiments evaluate habituation theory from
different angles, showing its neural and behavioral effects
(Figure 2).  Combined, Experiments 1 and 2 provide strong
evidence that the polymorphic warning, as an IT artifact, can
substantially reduce habituation and improve warning
adherence.

Limitations and Future Research

Our research is subject to several limitations.  First, fMRI
methods require stimuli to be repeated for the sake of reli-
ability of measurement.  However, as noted above, this results
in poor ecological validity in the context of habituation to
warnings.  We discuss this limitation in further detail in
Appendix F.  However, Experiment 2 partially compensated
for this limitation by showing how warning adherence
diminishes with repeated exposure.  The pattern of habituation
we observed in Experiment 2 closely resembles the fMRI and
eye-tracking results of Experiment 1, suggesting that the
experimental design of Experiment 1 is a good proxy for real-
world habituation to warnings, despite its artificiality.

Second, Experiments 1 and 2 used different experimental
designs and are, therefore, not directly comparable.  This is a
consequence of the methodological limitations of fMRI, as
well as the different objectives for each experiment.  Addi-
tionally, both experiments used different sets of stimuli: 
Experiment 1 involved images of a large variety of warnings
with four polymorphic variations, while Experiment 2 used a
single warning with 16 polymorphic variations.  For these
reasons, we argue that Experiment 2 complements rather than
replicates Experiment 1.  Nevertheless, both experiments are
consistent in their (1) application of habituation theory,
(2) use of polymorphic design principles, and (3) results.

Third, although the goal of Experiment 2 was to provide a
realistic field experiment, it, too, necessarily involved some
artificiality.  For example, participants completed an assigned
task (i.e., download and evaluate three mobile apps a day
from a designated app store), rather than behaving freely as in
a true field study.  Similarly, we presented participants with
four artificial risky permissions that are not actually used by
the Android OS (see Table 6).  These design decisions are
typical of the field experiment method, which imposes experi-
mental conditions for the sake of precision and control but
does so in a natural environment for enhanced realism
(Boudreau et al. 2001).

Fourth, participants did not experience any negative conse-
quences in Experiment 2 for installing an app that requested
a risky permission.  Therefore, an alternative explanation for
the diminishing of security warning adherence over the three
weeks is the “crying wolf” effect, in which people ignore a
warning for which the associated danger never materializes
(Sunshine et al. 2009), rather than due to habituation, as we
theorize.  However, this was true of both the static and poly-
morphic conditions; and yet, warning adherence in the poly-
morphic condition remained high throughout the experiment.
In addition, the results are consistent with those of Experi-
ment 1, which clearly showed the effects of habituation when
warnings are repeated.  These two findings provide strong
evidence that habituation was a key factor in Experiment 2,
although other factors may also have been at play.

Finally, security warnings may fail for a variety of reasons,
such as lack of comprehension on the part of recipients (Felt
et al. 2015), distraction or interfering noise in the environment
(Wogalter 2006), or conscious decisions to ignore them
(Herley 2009).  Future research should investigate these and
other factors (Anderson, Vance et al. 2016a).  Similarly,
besides response decrement and recovery, other facets of
habituation may influence the users’ responses to security
warnings, such as dishabituation (the recovery of a response
by encountering another strong stimulus) and generalization
(the carryover of habituation from one stimulus to another
novel stimulus; Rankin et al. 2009).

Conclusion

This paper contributes to the IS literature by providing the
most complete examination to date of the problem of habitu-
ation to security warnings.  We added to past research by
examining habituation longitudinally, both via fMRI and eye
tracking, as well as through a field experiment involving
security warning adherence.  Our results illustrate that habitu-
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ation occurs over time at the neurobiological level.  We also
demonstrated that exposure to repeated warnings results in
diminishing security warning adherence.  Finally, we showed
that polymorphic warnings are effective in reducing habitua-
tion over time, manifested as both attention at the neuro-
biological level and in actual security warning adherence.
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Appendix A

Theoretical and Methodological Background of Habituation

Habituation and Habit Compared

Although the words have the same Latin root, the construct of habituation is very different from the construct of habit.  Habit is defined as
“learned sequences of acts that have become automatic responses to specific cues, and are functional in obtaining certain goals or end-states”
(Verplanken and Aarts 1999, p. 104).  Further, habits are “created by frequently and satisfactorily pairing the execution of an act in response
to a specific cue” (Verplanken and Orbell 2003, p. 1314).  These descriptions show that habit occurs at the behavioral level and is a form of
associative learning, in which behaviors are associated with specific outcomes.

Habituation, in contrast, occurs at the neurobiological level (Ramaswami 2014); it is a form of nonassociative learning, in which an organism
filters out stimuli that in the past have not led to relevant outcomes (Rankin et al. 2009).  Further, habituation does not require subsequent
behavior but occurs involuntarily, that is, without conscious awareness.  Indeed, habituation and habit correspond with opposite ends of the
C–HIP model:  the “attention” and “behavior” stages, respectively.  Although habitual behavior is also relevant to security warnings, we restrict
our focus to habituation in this study.

What Is Habituation?

Habituation is widely recognized as “the simplest and most basic form of learning” (Rankin 2009, p. 125); it is believed to be ubiquitous in
the animal kingdom, having been found “in every organism studied, from single-celled protozoa, to insects, fish, rats, and people” (Rankin
2009, p. 125; see also Christoffersen 1997).  In contrast to associative learning, in which a response to stimulus is associated with another
stimulus (e.g., Pavlovian conditioning), habituation is a form of nonassociative learning, because an organism undergoing habituation adjusts
the way in which it responds to a stimulus without pairing it with another stimulus, such as a specific consequence (Çevik 2014).

MIS Quarterly Vol. 42  No. 2—Appendices/June 2018 A1



Vance et al./Tuning Out Security Warnings

Habituation is an important survival mechanism because it allows organisms to filter out stimuli in the environment that are not relevant, thus
conserving energy to respond to stimuli that predict things that are good or bad for survival (Schmid et al. 2014).  Not surprisingly, humans
exhibit habituation to a wide variety of stimuli—visual, auditory, and others—and it is evident as early as infancy (Colombo and Mitchell 2009).

Repetition Suppression:  A Neurobiological View of Habituation

A neural manifestation of habituation to visual stimuli in the brain is called repetition suppression (RS):  the reduction of neural responses to
stimuli that are repeatedly viewed (Grill-Spector et al. 2006).  RS has been observed in a range of neural measurement techniques, including
single-cell recording (Kaliukhovich and Vogels 2010), functional magnetic resonance imaging (fMRI) (Hawco and Lepage 2014; Summerfield
et al. 2008; Vidyasagar et al. 2010), electroencephalography (EEG) (Summerfield et al. 2011), and magnetoencephalography (MEG) (Todorovic
and de Lange 2012).  Researchers have observed activation decreases for repeated stimuli at delays ranging from mere milliseconds to days
(Grill-Spector et al. 2006; van Turennout et al. 2000).

Despite the robustness of the findings on RS, debate continues on the neural and cognitive reasons for reduced neural responses to repeated
stimuli and how they relate to long-term behavioral habituation.  The two most prevalent (and opposing) explanations for RS are the bottom-up
and top-down models (Valentini 2011).  According to the bottom-up (or fatigue) model, RS is due to the refractory period of local neural
generators in response to physical stimulation (Grill-Spector et al. 2006).  In contrast, the top-down (or predictive coding) model holds that
RS is not local in nature but instead is due to higher levels of cognition wherein the brain determines the expected probability with which a
stimulus will occur (Mayrhauser et al. 2014).  Recent research suggests that RS is likely a result of a combination of the bottom-up and top-
down mechanisms (Hsu et al. 2014; Mayrhauser et al. 2014; Valentini 2011).

Eye Movement-Based Memory:  An Eye Tracking-Based View of Habituation

Another manifestation of habituation is the eye movement–based memory (EMM) effect (Ryan et al. 2000).  The EMM effect is apparent in
fewer eye-gaze fixations and less visual sampling of the regions of interest within the visual stimulus.  Memory researchers have discovered
that the EMM effect is a pervasive phenomenon in which people unconsciously pay less attention to images they have viewed before.  With
repeated exposure, the memories become increasingly available, thus requiring less visual sampling of an image (Heisz and Shore 2008).
People’s attention fundamentally decreases in a systematic fashion with repeated viewings, even when they do not consciously recognize that
they have seen an image before (Hannula et al. 2010).  For these reasons, the EMM effect is a robust means of directly observing habituation
to security warnings and of evaluating warning designs intended to reduce its occurrence.

Appendix B

fMRI and Eye-Tracking Experimental Details

Equipment

MRI scanning took place at a university MRI research facility with the use of a Siemens 3T TIM Trio scanner.  For each scanned participant,
we collected a high-resolution structural MRI scan for functional localization, in addition to a series of functional scans to track brain activity
during the performance of various tasks.  Structural images for spatial normalization and overlay of functional data were acquired with a T1-
weighted magnetization-prepared rapid gradient-echo (MP-RAGE) sequence with the following parameters:  matrix size = 224 × 256; TR =
1900 ms; TE = 2.26 ms; field of view = 219 × 250 mm; NEX = 1; slice thickness = 1.0 mm; voxel size = 1 × .977 × .977 mm3; flip angle = 9°;
number of slices = 176.  Functional scans were acquired with a T2*-weighted gradient-echo echoplanar pulse sequence with the following
parameters:  matrix size = 64 × 64; field of view = 192 mm; slice thickness = 3 mm; TR = 2000 ms; 229 TRs; TE = 28 ms; number of slices
= 39; voxel size = 3 × 3 × 3 mm; flip angle = 90°.  Slices were aligned parallel with the rostrum and the splenium of the corpus callosum.  The
first three volumes acquired were discarded to allow for T1 stabilization.

Eye-tracking data were collected on each scan using an MRI-compatible SR Research EyeLink 1000 Plus long-range eye tracker (see Figure
B2) with a spatial resolution of 0.01° and sampling at 1,000 Hz.  Eye movements were recorded for the right eye.  A nine-point calibration
routine was used to map eye position in order to screen coordinates prior to each scanning block.  Eye-fixation data were processed with
DataViewer software (SR Research Ltd., version 1.11.900) to identify fixations and saccades.  Saccades were defined as eye movements that
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met three parameters:  eye movement of at least .1°, velocity of at least 30°/second, and acceleration of at least 8,000°/second.  Fixations were
defined as periods of time that were between the saccades and that were not part of blinks.  Image size was normalized to subtend approximately
8.5° of the visual angle on the images’ longest axis.

Engagement Check

To ensure that participants were attentive to the task in the scanner, they were instructed to rate the severity of the content of each item as it
was presented to them; the answer choices available to them were “extremely severe,” “somewhat severe,” “somewhat not severe,” and
“extremely not severe.”  Answers were given any time during each trial by pressing a button on an MRI-compatible button box.  Following
Dimoka (2012), we performed two checks to ensure that participants were engaged in the task.  First, we explored whether participants ranked
each stimulus on the severity scale or ignored the ranking.  We found that participants ranked stimuli 99.8% of the time, which is a strong
indicator of engagement.  Second, we explored whether participants ranked the security warnings as more severe than the software prompts,
which would suggest that participants were giving thoughtful responses.  A t-test indicated that participants did indeed report that the security
warnings (m = 2.998, SD = 1.478) were more severe than the software prompts [(m = 2.366, SD = 1.826), t (13463) = 25.236, p < .001, d =
0.435].

fMRI Data Analysis Details

Functional data were slice-time corrected to account for differences in acquisition time for different slices of each volume; then, each volume
was registered with the middle volume of each run to account for low-frequency motion.  A three-dimensional automated image registration
routine—program 3dVolreg (Cox and Jesmanowicz 1999), which uses Fourier interpolation—was applied to the volumes to realign them with
the first volume of the first series used as a spatial reference.  Data from each run were aligned with the run nearest in time to the acquisition
of the structural scan.  The structural scan was then coregistered to the functional scans.  Spatial normalization was accomplished by calculating
a transformation from each subject’s structural scan to a template brain with advanced neuroimaging tools (ANTs) and then applying the
transformation to the structural and functional data for each subject.  The experimental design is represented pictorially in Figure B1.

Behavioral vectors were created that coded for stimulus type (e.g., security warnings, general software images) and repetition number.  These
were then entered separately into single-participant regression analyses for each day.  Stimulus events were modeled using a stick function
convolved with the canonical hemodynamic response.  Regressors that coded for motion and scanner drift were also entered into the model
as nuisance variables.  Spatial smoothing was conducted by blurring the resulting beta values with a 5-mm FWHM Gaussian kernel to increase
the signal-to-noise ratio.  Beta values for the conditions of interest were then entered into group-level analyses as we tested each hypothesis
(below).  Group comparisons were corrected for multiple comparisons using a voxel-wise threshold of p < .02 and a spatial-extent threshold
of 40 contiguous voxels (1080 mm3) for an overall corrected p-value < .05, as determined through Monte Carlo simulations (Xiong et al. 1995).
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Figure B1.  fMRI Repetition-Suppression-Effect (RSE) Longitudinal Protocol

Figure B2.  EyeLink 1000 Plus Long-Range Eye Tracker (mounted under the MRI viewing monitor)
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Appendix C

Supplemental Analysis of Fixation Duration

In our main analysis, we tested the hypotheses with the eye-tracking data, using fixation count as the dependent variable.  As a supplemental
analysis, we tested our hypotheses using fixation duration, or the total time a person is fixated on a security message, as the dependent variable. 
The results are summarized below.

H1a Analysis:  Users Habituate to Warnings Within an Experimental Session

We included fixation duration as the dependent variable; the subject ID, day number, and warning ID were included as random factors in a
linear mixed-effects model.  The presentation number was treated as a fixed factor, and visual complexity1 was included as a covariate.  The
analysis supported H1a; the presentation number beta was significantly negative, indicating that habituation had occurred:  χ2(1, N = 11,976)
= 174.37, p < .001, β = -34.30.  However, visual complexity was not significant:  χ2(1, N = 11,976) = 2.84, p > .05, β = 12.25.  The R2 of the
model was .386.

H1b Analysis:  Users Habituate Less to Polymorphic Warnings than to Static
Warnings Within an Experimental Session

We specified the same mixed-effects model as in H1a, except that we included an interaction term between presentation number and
determination of whether the warning was polymorphic.  If the interaction was significantly positive, this would indicate that the participants
habituated less to polymorphic warnings.  The eye-tracking analysis supported H1b.  Both main effects for presentation number [χ2(1, N =
11,976) = 132.89, p < .001, β = -42.26] and polymorphism [χ2(1, N = 11,976) = 5.62, p < .01, β = -33.60] were significant; in addition, the
interaction was significant:  χ2(1, N = 11,976) = 2.95, p > .05, β = 15.94.  Visual complexity was not significant:  χ2(1, N = 11,976) = 82.79,
p < .001, β = 12.48.  The R2 of the model was .387.

H2a Analysis:  Users Habituate to Warnings Across Days

In the linear mixed-effects model, we included fixation duration as the dependent variable, with the subject ID and warning ID as random
factors.  The presentation number (across days) was treated as a fixed factor, and visual complexity was included as a covariate.  The eye-
tracking analysis supported H2a; the beta of presentation number across days was significantly negative [χ2(1, N = 11,976) = 769.24, p < .001,
β = -15.35], indicating habituation.  Visual complexity was not significant:  χ2(1, N = 11,976) = 2.94, p > .05, β = 12.40.  The R2 of the model
was 0.269.

H2b Analysis:  Users Habituate Less to Polymorphic Warnings than to
Static Warnings Across Days

We specified the same mixed-effects model as in H2a, except that we included an interaction term between presentation number (across days)
and determination of whether the warning was polymorphic (coded as 1 for polymorphic and 0 for static).  The eye-tracking analysis supported
H1b; the interaction between presentation number and polymorphic-warning type was significantly positive [χ2(1, N = 11,976) = 3.25, p < .05,
β = 1.962], indicating that participants habituated less to polymorphic warnings across days than to static warnings.  The main effect for
presentation number [χ2(1, N = 11,976) = 441.44, p < .001, β = -16.328] was significant, but the main effect for polymorphism [χ2(1, N =
11,976) = 1.03, p >.05, β = -13.405] was not.  Visual complexity was not significant:  χ2(1, N = 11,976) = 3.09, p > .05, β = 12.686.  The R2

of the model was 0.153.

1Visual complexity was calculated using a script in MATLAB (Rosenholtz et al. 2007).
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H3a Analysis:  If Warnings Are Withheld After Habituation Occurs,
the Response Recovers at Least Partially the Next Day

We subtracted the fixation duration for the first viewing of a warning on a day from the fixation duration for the last viewing of the warning
on the previous day.  We then conducted a t-test to test this hypothesis.  The analysis supported H3a; participants experienced significant
positive recovery (m = 35.887, SD = 483.903) from day to day:  t(2288) = 3.5482, p < .001, d = 0.148.

H3b Analysis:  If Warnings Are Withheld After Habituation Occurs, Response Recovery Is
Stronger for Polymorphic Warnings than for Static Warnings the Next Day

We again subtracted the fixation duration for the first viewing of a warning on a day from the fixation duration for the last viewing of the
warning on the previous day.  We then specified a linear mixed-effects model that tested whether warning type (polymorphic versus static)
predicted this difference.  The subject ID, day interval (e.g., the difference between day 1 and day 2 was coded as 1), and warning ID were
included as random factors.  Polymorphism (coded as 1 for polymorphic and 0 for static) was included as a fixed factor, and visual complexity
was included as a covariate.  The eye-tracking analysis did not support H3b.  Neither the warning type [χ2(1, N = 2,400) = 2.05, p > .05, β =
-24.14] nor visual complexity [χ2(1, N = 2,400) = 3.28, p > .05, β = 18.53] significantly predicted recovery between days.

H4a Analysis:  The Amount of Recovery Will Decrease Across Days

We again used the difference in the fixation duration for the last viewing of the warning on the previous day as our dependent variable.  We
specified a mixed-effects model that tested whether the day interval (e.g., 1 for the difference between days 1 and 2) predicted this difference.
The subject ID and warning ID were included as random factors.  The day interval was treated as a fixed factor, and visual complexity was
included as a covariate.  The eye-tracking analysis supported H4a.  The day interval was significantly negative [χ2(1, N = 2,400) = 9.77, p <
.001, β = -27.73], indicating that recovery decreased across days.  Visual complexity was not significant:  χ2(1, N = 2,400) = 3.39, p > .05, β
= 18.75.  The R2 of the model was .079.

H4b Analysis:  The Amount of Recovery Will Decrease Less for Polymorphic
Warnings than for Static Warnings Across Days

We specified the same linear mixed-effects model as in H4a, except that we included an interaction term between day intervals (the difference
between days) and another term for whether the warning was polymorphic (coded as 1 for polymorphic and 0 for static).  The eye-tracking
analysis did not support H4b.  The main effect for day number [χ2(1, N = 2,400) = 7.05, p > .01, β = 33.25] was significant.  However, the main
effect for polymorphism [χ2(1, N = 2,400) = 0.01, p > .05, β = -4.86] and for the interaction were nonsignificant:  χ2(1, N = 2,400) = 0.40, p
> .05, β = -11.12.  Likewise, visual complexity was nonsignificant:  χ2(1, N = 2,400) = 2.93, p > .05, β = 17.48.  Table C1 compares the results
for fixation count, fixation duration, and fMRI data.
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Table C1.  Summary of Results

Hypothesis
Fixation
Count

Fixation
Duration

fMRI

H1a:  Users habituate to warnings within an experimental session. Supported Supported Supported

H1b:  Users habituate less to polymorphic warnings than to static
warnings in an experimental session.

Supported Supported Supported

H2a:  Users habituate to warnings across days. Supported Supported Supported

H2b:  Users habituate less to polymorphic warnings than to static
warnings across days.

Supported Supported Supported

H3a:  If warnings are withheld after habituation occurs, the response
recovers at least partially the next day.

Supported Supported Supported

H3b:  If warnings are withheld after habituation occurs, response
recovery is stronger for polymorphic warnings than for static warnings the
next day.

Not supported Not supported Not supported

H4a:  The amount of recovery will decrease across days. Supported Supported Not supported

H4b:  The amount of recovery will decrease less for polymorphic
warnings than for static warnings across days.

Not supported Not supported Not supported
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Appendix D

Polymorphic Warning Variations Used in Experiment 2

Figure D1.  Nonanimated Polymorphic Variations
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Figure D2.  Animated Polymorphic Variation:  Flash 

Figure D3.  Animated Polymorphic Variation:  Flip
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Figure D4.  Animated Polymorphic Variation:  “Light Speed In”

Figure D5.  Animated Polymorphic Variation:  Pulse
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Figure D6.  Animated Polymorphic Variation:  “Rotate In”

Figure D7.  Animated Polymorphic Variation:  “Rubber Band”
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Figure D8.  Animated Polymorphic Variation:  Swing 

Figure D9.  Animated Polymorphic Variation:  “Zoom In”
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Appendix E

NeuroIS Contributions of Experiment 1

Experiment 1 used fMRI to measure underlying brain activity when individuals were presented with warning messages.  As with any research
method, the use of fMRI has both strengths and weaknesses.  It is important to consider both, along with the purpose of the study, when
evaluating the methodology of the experiment.

In information systems research, neurobiological methods can contribute to a deeper understanding of hidden (automatic or unconscious) mental
processes; these mental processes are one of seven research opportunities for NeuroIS suggested by Dimoka et al. (2011).  Habituation is one
such mental process that does not require the conscious awareness of the organism (Groves and Thompson 1970; Sokolov 1963).  As such, self-
report measures are not useful because users may not even recognize that the process of habituation is occurring (Dimoka et al. 2011; Riedl
and Léger 2016; vom Brocke et al. 2013).  

Further, although behavioral methods can provide evidence that the artifact reduces warning adherence behavior, these approaches are not able
to reveal the extent to which habituation in the brain plays a part in this behavior.  Therefore, the use of fMRI yields deeper insights by moving
past conscious experience toward looking at the neurobiological processes that are involved (Riedl and Léger 2016).  fMRI allows the
examination of neuronal processes through the blood oxygen level-dependent (BOLD) response, which is correlated with neuronal activation
(Goense and Logothetis 2008), giving an accurate picture of which structures are involved and allowing for inferences about what to manipulate
in the IT artifact.  In Experiment 1, for example, we confirmed that even with long-term habituation, visual processing areas of the brain show
strong habituation effects.  Such a finding shows that users are not merely disregarding a warning when they are presented with it; they may
not even notice that a warning is novel.  This finding lends support to the need for a visual change in the IT artifact (Riedl and Léger 2016).

Finally, existing sources of data—in this case, eye tracking—were complemented in Experiment 1 with brain imaging data, another of the seven
research opportunities enjoined by Dimoka et al. (2011).  Although eye tracking has been used before to examine habituation to warnings in
a cross-sectional experiment (Anderson et al. 2016), Experiment 1 contributes by having simultaneously collected eye-tracking and
neuroimaging data over a five-day period.  We found that the eye-tracking results closely mimicked the fMRI results, suggesting that eye
tracking is a valid index of the mental process of habituation.  This suggests that eye tracking is a cost-effective alternative to fMRI for studying
habituation to warnings as a mental process, enabling future researchers to conduct less intrusive habituation studies that use eye tracking in
a normal computing environment.

Appendix F
Ecological Validity Limitations of Experiment 1

The objective of Experiment 1 was to evaluate habituation of attention in the brain in response to static and polymorphic warnings. 
Accomplishing this purpose required a controlled laboratory setting to enable a precise test of habituation theory, as well as the use of an MRI
scanner.  The results of Experiment 1 provide unique insights that would not be possible using traditional behavioral methods, as explained
in Appendix E.  However, these neural insights come at the expense of ecological validity, which concerns whether an “effect is representative
of what happens in everyday life” (Crano et al. 2015, p. 136).

There are two primary reasons for this tradeoff.  The first is inherent in all fMRI studies.  As Riedl et al. (2010, p. 255) observed:

During an fMRI experiment, for example, participants are required to lie still on their back within the scanner while their
head is restrained with pads to prevent head motion.  Within the scanner, participants can use simple devices to react to
the stimuli presented by pressing a button (e.g., to state a chosen alternative in a decision task). . . . An fMRI scanner is
also relatively noisy, posing a potential distraction and making auditory stimulus presentation difficult.  Therefore, experi-
mental situations in fMRI studies are artificial, because in real life, computer users usually sit in front of their computer
in a familiar, comfortable, and quiet environment.

This artificiality results in a high degree of intrusiveness compared to traditional behavioral methods or even other NeuroIS methods (Riedl
et al. 2014).
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The second tradeoff in ecological validity is specific to studying habituation to warnings.  As explained in the discussion section, habituation
is a neurobiological phenomenon that relies on the number of presentations of a stimulus in a given amount of time (Rankin et al. 2009).  Since
security warnings are relatively infrequent, displaying many warning presentations in a single experimental session, even if done in a
proportionally accurate way (see Figure 16), may result in a pattern of habituation that is not representative of habituation to warnings in real
life.  This limitation applies to any laboratory experiment of habituation, regardless of whether it uses neuroimaging or traditional behavioral
methods.2  However, this problem is exacerbated by the requirement of the fMRI method for repeated trials of stimuli to ensure a reliable
measure of the response (Turner et al. 2013).  Repeated trials result in a high number of warnings being displayed in a single laboratory session.

Given the ecological validity limitations of fMRI and NeuroIS in general, Dimoka et al. (2012) recommended that researchers “replicate
[NeuroIS experiments] in a more traditional setting and compare the corresponding behavioral responses to test for external validity” (p. 682),
adding that “the richness provided by multiple sources of measures can be used to enhance the ecological validity of IS studies” (p. 695). 
Accordingly, one of our objectives for Experiment 2 was to conduct a realistic field experiment that we could compare against our fMRI
experiment.  Although the methods, dependent variables, and experimental designs of Experiments 1 and 2 were quite different, the results
corroborate each other in terms of (1) the overall pattern of habituation, (2) the effectiveness of polymorphic warnings in reducing habituation,
and (3) the effect of recovery between exposure to warnings (see Table 8).  We therefore conclude that the results of Experiment 1 are
reasonably accurate, despite the issues of ecological validity discussed above.
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